




已阅读5页,还剩155页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第10讲平面直角坐标系与函数第11讲一次函数的图象与性质第12讲一次函数的应用第13讲反比例函数第14讲二次函数的图像及其性质第15讲二次函数与一元二次方程第16讲二次函数的应用 第三单元函数及其图象 第三单元函数及其图象 第10讲 平面直角坐标系与函数 第10讲平面直角坐标系与函数 第10讲 考点聚焦 考点1平面直角坐标系 一一 第10讲 考点聚焦 x 0y 0 x0 x 0y 0 x 0y 0 y 0 x为任意实数 x 0 y为任意实数 第10讲 考点聚焦 考点2平面直角坐标系内点的坐标特征 第10讲 考点聚焦 相等 互为相反数 考点3点到坐标轴的距离 第10讲 考点聚焦 纵坐标的绝对值 横坐标的绝对值 考点4平面直角坐标系中的平移与对称点的坐标 第10讲 考点聚焦 x a y x a y x y b x y b 第10讲 考点聚焦 x y x y x y 考点5用坐标表示地理位置 第10讲 考点聚焦 考点6函数的有关概念 第10讲 考点聚焦 不变 变化 第10讲 考点聚焦 第10讲 考点聚焦 考点6函数的表示方法 第10讲 考点聚焦 考点7函数图象的概念及画法 第10讲 考点聚焦 第10讲 归类示例 类型之一与平面直角坐标系有关的问题 命题角度 1 平面直角坐标系的概念2 求坐标系中点的坐标 例1 2012 山西 如图10 1 在平面直角坐标系中 矩形oabc的对角线ac平行于x轴 边oa与x轴正半轴的夹角为30 oc 2 则点b的坐标是 图10 1 第10讲 归类示例 第10讲 归类示例 类型之二坐标平面内点的坐标特征 命题角度 1 四个象限内点的坐标特征 2 坐标轴上的点的坐标特征 3 平行于x轴 平行于y轴的直线上的点的坐标特征 4 第一 三 第二 四象限的平分线上的点的坐标特征 例2 2012 扬州 在平面直角坐标系中 点p m m 2 在第一象限 则m的取值范围是 m 2 解析 由第一象限内点的坐标的特点可得 解得m 2 类型之三关于x轴 y轴及原点对称的点的坐标特征 命题角度 1 关于x轴对称的点的坐标特征 2 关于y轴对称的点的坐标特征 3 关于原点对称的点的坐标特征 第10讲 归类示例 例3 2012 遂宁 平面直角坐标系中 点 3 4 关于y轴对称的点的坐标是 3 4 解析 因为要求的点与点 3 4 关于y轴对称 所以它的横坐标是已知点的相反数 即3 而纵坐标不变 所以要求点的坐标是 3 4 第10讲 归类示例 平面直角坐标系中 与点有关的对称关系常用的有3种 关于x轴成轴对称的两点的坐标特点 横坐标相同 纵坐标互为相反数 关于y轴成轴对称的两点的坐标特点 横坐标互为相反数 纵坐标相同 关于原点成中心对称的两点的坐标特点 横坐标和纵坐标都互为相反数 类型之三坐标系中的图形的平移与旋转 例4 2012 南京 在平面直角坐标系中 规定把一个三角形先沿着x轴翻折 再向右平移2个单位长度称为1次变换 如图10 2 已知等边三角形abc的顶点b c的坐标分别是 1 1 3 1 把 abc经过连续9次这样的变换得到 a b c 则点a的对应点a 的坐标是 第10讲 归类示例 命题角度 1 坐标系中的图形平移的坐标变化与作图 2 坐标系中的图形旋转的坐标变化与作图 图10 2 第10讲 归类示例 求一个图形旋转 平移后的图形上对应点的坐标 一般要把握三点 一是根据图形变换的性质 二是利用图形的全等关系 三是确定变换前后点所在的象限 类型之五函数的概念及函数自变量的取值范围 例5 2012 无锡 第10讲 归类示例 命题角度 1 常量与变量 函数的概念 2 函数自变量的取值范围 x 2 解析 由题意 得2x 4 0 解得x 2 第10讲 归类示例 函数自变量的取值范围一般从三个方面考虑 1 当函数关系式是整式时 自变量可取全体实数 2 当函数关系式是分式时 考虑分式的分母不能为0 3 当函数关系式是二次根式时 被开方数为非负数 此题就是第三种情形 考虑被开方数必须大于等于0 类型之五函数图象 例6 2012 南京 看图说故事 请你编写一个故事 使故事情境中出现的一对变量x y满足图示的函数关系 要求 指出变量x和y的含义 利用图中的数据说明这对变量变化过程的实际意义 其中必须涉及 速度 这个量 第10讲 归类示例 命题角度 1 画函数图象 2 函数图象的实际应用 图10 3 第10讲 归类示例 解析 本题是一道开放性问题 其目的是体现函数中变量之间的关系 并能赋予这两个变量的实际意义 编写的故事只要符合这两个条件即可 解 小明的爷爷晚饭后出去散步 5分钟后到达离家2千米的公园 在公园里的健身器材处锻炼了6分钟 由于即将下雨 小明爷爷花了4分钟就赶回了家里 请问小明爷爷回家的速度比出去时的速度快多少 第11讲 一次函数的图象与性质 第11讲一次函数的图象与性质 第11讲 考点聚焦 考点1一次函数与正比例函数的概念 第11讲 考点聚焦 考点2一次函数的图象和性质 1 正比例函数与一次函数的图象 一条直线 第11讲 考点聚焦 2 正比例函数与一次函数的性质 一 三象限 二 四象限 第11讲 考点聚焦 一 二 三象限 一 三 四象限 一 二 四象限 二 三 四象限 考点3两条直线的位置关系 第11讲 考点聚焦 k1 k2 k1 k2 b1 b2 考点4两直线的交点坐标及一次函数的图象与坐标轴围成的三角形的面积 第11讲 考点聚焦 考点5由待定系数法求一次函数的解析式 第11讲 考点聚焦 因在一次函数y kx b k 0 中有两个未知系数k和b 所以 要确定其关系式 一般需要两个条件 常见的是已知两点p1 a1 b1 p2 a2 b2 将其坐标代入得求出k b的值即可 这种方法叫做 待定系数法 考点6一次函数与一次方程 组 一元一次不等式 组 第11讲 考点聚焦 第11讲 归类示例 类型之一一次函数的图象与性质 命题角度 1 一次函数的概念 2 一次函数的图象与性质 例1 2012 山西 如图11 1 一次函数y m 1 x 3的图象分别与x轴 y轴的负半轴相交于点a b 则m的取值范围是 a m 1b m0 图11 1 b 第11讲 归类示例 解析 根据函数的图象可知m 1 0 求出m的取值范围为m 1 故选b 第11讲 归类示例 k和b的符号作用 k的符号决定函数的增减性 k 0时 y随x的增大而增大 k 0时 y随x的增大而减小 b的符号决定图象与y轴交点在原点上方还是下方 上正 下负 类型之二一次函数的图象的平移 命题角度 1 一次函数的图象的平移规律 2 求一次函数的图象平移后对应的解析式 第11讲 归类示例 例2 2012 衡阳 如图11 2 一次函数y kx b的图象与正比例函数y 2x的图象平行且经过点a 1 2 则kb 图11 2 8 第11讲 归类示例 解析 y kx b的图象与正比例函数y 2x的图象平行 两平行直线的解析式的k值相等 k 2 y kx b的图象经过点a 1 2 2 b 2 解得b 4 kb 2 4 8 第11讲 归类示例 直线y kx b k 0 在平移过程中k值不变 平移的规律是若上下平移 则直接在常数b后加上或减去平移的单位数 若向左 或向右 平移m个单位 则直线y kx b k 0 变为y k x m b 或k x m b 其口诀是上加下减 左加右减 类型之三求一次函数的解析式 例3 2012 湘潭 已知一次函数y kx b k 0 图象过点 0 2 且与两坐标轴围成的三角形面积为2 求此一次函数的解析式 第11讲 归类示例 命题角度 由待定系数法求一次函数的解析式 类型之四一次函数与一次方程 组 一元一次不等式 组 例4 2012 湖州 一次函数y kx b k b为常数 且k 0 的图象如图11 3所示 根据图象信息可求得关于x的方程kx b 0的解为 第11讲 归类示例 命题角度 1 利用函数图象求二元一次方程组的解 2 利用函数图象解一元一次不等式 组 x 1 图11 3 第11讲 归类示例 第11讲 归类示例 1 两直线的交点坐标是两直线所对应的二元一次方程组的解 2 根据在两条直线的交点的左右两侧 图象在上方或下方来确定不等式的解集 第11讲 回归教材 待定系数法求 已知两点的一次函数的关系式 教材母题江苏科技版八上p156t5根据所给函数图象 写出函数关系式 如图11 4 图11 4 第11讲 回归教材 第11讲 回归教材 中考变式 图11 5 2012 聊城 如图11 5 直线ab与x轴交于点a 1 0 与y轴交于点b 0 2 1 求直线ab的解析式 2 若直线ab上的点c在第一象限 且s boc 2 求点c的坐标 第11讲 回归教材 第12讲 一次函数的应用 第12讲一次函数的应用 第12讲 考点聚焦 考点1一次函数的应用 第12讲 归类示例 类型之一利用一次函数进行方案选择 命题角度 1 求一次函数的解析式 利用一次函数的性质求最大或最小值 2 利用一次函数进行方案选择 例1 2012 连云港 我市某医药公司把一批药品运往外地 现有两种运输方式可供选择 方式一 使用快递公司的邮车运输 装卸收费400元 另外每公里再加收4元 方式二 使用快递公司的火车运输 装卸收费820元 另外每公里再加收2元 第12讲 归类示例 1 请分别写出邮车 火车运输的总费用y1 元 y2 元 与运输路程x 公里 之间的函数关系式 2 你认为选用哪种运输方式较好 为什么 第12讲 归类示例 解析 1 根据方式一 二的收费标准即可得出y1 元 y2 元 与运输路程x 公里 之间的函数关系式 2 比较两种方式的收费多少与x的变化之间的关系 从而根据x的不同选择合适的运输方式 解 1 由题意得 y1 4x 400 y2 2x 820 2 令4x 400 2x 820 解之得x 210 所以当运输路程小于210km时 y1 y2 选择邮车运输较好 当运输路程等于210km时 y1 y2 选择两种方式一样 当运输路程大于210km时 y1 y2 选择火车运输较好 第12讲 归类示例 一次函数的方案决策题 一般都是利用自变量的取值不同 得出不同方案 并根据自变量的取值范围确定出最佳方案 类型之二利用一次函数解决资源收费问题 命题角度 1 利用一次函数解决个税收取问题 2 利用一次函数解决水 电 煤气等资源收费问题 第12讲 归类示例 例2 2012 遵义 为促进节能减排 倡导节约用电 某市将实行居民生活用电阶梯电价方案 图12 1中折线反映了每户居民每月用电电费y 元 与用电量x 度 间的函数关系 图12 1 第12讲 归类示例 1 根据图象 阶梯电价方案分为三个档次 请填写下表 2 小明家某月用电120度 需要交电费 元 3 求第二档每月电费y 元 与用电量x 度 之间的函数关系式 4 在每月用电量超过230度时 每多用1度电要比第二档多付电费m元 小刚家某月用电290度交纳电费153元 求m的值 54 第11讲 归类示例 解析 1 利用函数图象可以得出 阶梯电价方案分为三个档次 利用横坐标可得出 第二档 第三档中x的取值范围 2 根据第一档范围是 0 x 140 利用图象上点的坐标得出解析式 进而得出x 120时y的值 3 设第二档每月电费y 元 与用电量x 度 之间的函数关系式为 y kx b 将 140 63 230 108 代入求出k b的值即可 4 分别求出第二 三档每度电的费用 进而得出m的值即可 第12讲 归类示例 第12讲 归类示例 第12讲 归类示例 此类问题多以分段函数的形式出现 正确理解分段函数是解决问题的关键 一般应从如下几方面入手 1 寻找分段函数的分段点 2 针对每一段函数关系 求解相应的函数解析式 3 利用条件求未知问题 类型之三利用一次函数解决其他生活实际问题 例3 2012 义乌 周末 小明骑自行车从家里出发到野外郊游 从家出发0 5小时后到达甲地 游玩一段时间后按原速前往乙地 小明离家1小时20分钟后 妈妈驾车沿相同路线前往乙地 如图12 2是他们离家的路程y km 与小明离家时间x h 的函数图象 已知妈妈驾车的速度是小明骑车速度的3倍 第12讲 归类示例 命题角度 函数图象在实际生活中的应用 第12讲 归类示例 1 求小明骑车的速度和在甲地游玩的时间 2 小明从家出发多少小时后被妈妈追上 此时离家多远 3 若妈妈比小明早10分钟到达乙地 求从家到乙地的路程 图12 2 第12讲 归类示例 解析 1 用路程除以时间即可得到速度 在甲地游玩的时间是1 0 5 0 5 h 2 如图 求得线段bc所在直线的解析式和de所在直线的解析式后求得交点坐标即可求得被妈妈追上的时间 3 可以设从妈妈追上小明的地点到乙地的路程为nkm 根据妈妈比小明早到10分钟列出有关n的方程 求得n值即可 第12讲 归类示例 第12讲 归类示例 第12讲 归类示例 结合函数图象及性质 弄清图象上的一些特殊点的实际意义及作用 寻找解决问题的突破口 这是解决一次函数应用题常见的思路 图形信息 题是近几年的中考热点考题 解此类问题应做到三个方面 1 看图找点 2 见形想式 3 建模求解 第12讲 回归教材 根据一次函数的图象进行选择最优方案教材母题江苏科技版八上p158某公司准备与汽车租赁公司签订租车合同 以每月用车路程xkm计算 甲汽车租赁公司的月租费是y1元 乙汽车租赁公司的月租费是y2元 如果y1 y2与x之间的关系如图12 3 那么 图12 3 第12讲 回归教材 1 每月用车路程多少时 租用两家汽车租赁公司的车所需费用相同 2 每月用车路程在什么范围内 租用甲汽车租赁公司的车所需费用较少 3 如果每月用车的路程约为2300km 那么租用哪家的车所需费用较少 第12讲 回归教材 解析 从函数图象看 当x 2000时 两个函数的图象相交于一点 此时两个函数的自变量相同 函数值相同 当x2000时 y1 y2 解 1 每月用车路程为2000km时 租用两家汽车公司的车所需费用相同 2 每月用车路程小于2000km时 租用甲汽车租赁公司的车所需费用较少 3 如果该公司每月用车的路程为2300km 那么租用乙汽车租赁公司的车所需费用较少 第12讲 回归教材 中考变式 图12 4 2011 宿迁 某通讯公司推出 两种通讯收费方式供用户选择 其中一种有月租费 另一种无月租费 且两种收费方式的通讯时间x 分钟 与收费y 元 之间的函数关系如图所示 1 有月租费的收费方式是 填 或 月租费是 元 2 分别求出 两种收费方式中y与自变量x之间的函数关系式 3 请你根据用户通讯时间的多少 给出经济实惠的选择建议 30 第12讲 回归教材 解析 1 当x 0 y 30 即表示有月租30元 2 设y有 k1x 30 y无 k2x 用待定系数法求解 3 由y有 y无 即选择通话方式 一样实惠 再讨论不等关系 第13讲 反比例函数 第13讲反比例函数 第13讲 考点聚焦 考点1反比例函数的概念 自变量 比例系数 第13讲 考点聚焦 考点2反比例函数的图象与性质 1 反比例函数的图象 双曲线 原点 第13讲 考点聚焦 2 反比例函数的性质 第13讲 考点聚焦 3 反比例函数比例系数k的几何意义 第13讲 考点聚焦 考点3反比例函数的应用 第13讲 归类示例 类型之一反比例函数的概念 命题角度 1 反比例函数的概念 2 求反比例函数的解析式 例1 2012 扬州 某反比例函数的图象经过 1 6 则下列各点中 此函数图象也经过的点是 a 3 2 b 3 2 c 2 3 d 6 1 a 第13讲 归类示例 第13讲 归类示例 判断点是否在反比例函数图象上的方法有两种 一是口算选项中点的横坐标与纵坐标乘积是否都等于比例系数 二是将选项中点的坐标诸个代入反比例函数关系式 看能否使等式成立 类型之二反比例函数的图象与性质 命题角度 1 反比例函数的图象与性质 2 反比例函数中k的几何意义 第13讲 归类示例 例2 a 第13讲 归类示例 比较反比例函数值的大小 在同一个象限内根据反比例函数的性质比较 在不同象限内 不能按其性质比较 函数值的大小只能根据特征确定 第13讲 归类示例 例3 2012 河南 如图13 1 点a b在反比例函数y k 0 x 0 的图象上 过点a b作x轴的垂线 垂足分别为m n 延长线段ab交x轴于点c 若om mn nc aoc的面积为6 则k的值为 4 图13 1 第13讲 归类示例 第13讲 归类示例 类型之三反比例函数的应用 例4 2012 镇江 如图13 2 在平面直角坐标系xoy中 直线y 2x n与x轴 y轴分别交于点a b 与双曲线y 在第一象限内交于点c 1 m 1 求m和n的值 2 过x轴上的点d 3 0 作平行于y轴的直线l 分别与直线ab和双曲线y 交于点p q 求 apq的面积 第13讲 归类示例 命题角度 1 反比例函数在实际生活中的应用 2 反比例函数与一次函数的综合运用 第13讲 归类示例 图13 2 第13讲 归类示例 解析 先根据双曲线上点c的坐标求出m的值 从而确定点c的坐标 再将点c的坐标代入一次函数关系式中确定n的值 在求出两个函数关系式后结合条件可求出三角形的面积 第13讲 归类示例 第13讲 回归教材 比较反比例函数值的大小方法多教材母题江苏科技版八下p70t2已知点a 2 y1 b 1 y2 和c 2 y3 都在反比例函数y k 0 的图象上 那么y1 y2和y3的大小关系如何 第13讲 回归教材 第13讲 回归教材 中考变式 2010 临沂 已知反比例函数y 图象上三个点的坐标分别是a 2 y1 b 1 y2 c 2 y3 能正确反映y1 y2 y3的大小关系的是 a y1 y2 y3b y1 y3 y2c y2 y1 y3d y2 y3 y1 c 第14讲 二次函数的图象及其性质 第14讲二次函数的图象与性质 一 第14讲 考点聚焦 考点1二次函数的概念 y ax2 bx c 第14讲 考点聚焦 考点2二次函数的图象及画法 y a x h 2 k 第14讲 考点聚焦 考点3二次函数的性质 第14讲 考点聚焦 第14讲 考点聚焦 第14讲 考点聚焦 考点3用待定系数法求二次函数的解析式 第14讲 考点聚焦 第14讲 归类示例 类型之一二次函数的定义 命题角度 1 二次函数的概念 2 二次函数的一般式 例1若y m 1 xm2 6m 5是二次函数 则m a 7b 1c 1或7d 以上都不对 解析 让x的次数为2 系数不为0 列出方程与不等式解答即可 由题意得 m2 6m 5 2 且m 1 0 解得m 7或 1 且m 1 m 7 故选a a 第14讲 归类示例 利用二次函数的定义 二次函数中自变量的最高次数是2 且二次项的系数不为0 类型之二二次函数的图象与性质 命题角度 1 二次函数的图象及画法 2 二次函数的性质 第14讲 归类示例 例2 1 用配方法把二次函数y x2 4x 3变成y x h 2 k的形式 2 在直角坐标系中画出y x2 4x 3的图象 3 若a x1 y1 b x2 y2 是函数y x2 4x 3图象上的两点 且x1 x2 1 请比较y1 y2的大小关系 直接写结果 4 把方程x2 4x 3 2的根在函数y x2 4x 3的图象上表示出来 第14讲 归类示例 解析 1 根据配方法的步骤进行计算 2 由 1 得出抛物线的对称轴 顶点坐标列表 注意抛物线与x轴 y轴的交点及对称点等特殊点的坐标 不要弄错 3 开口向上 在抛物线的左边 y随x的增大而减小 4 抛物线y x2 4x 3与直线y 2的交点的横坐标即为方程x2 4x 3 2的两根 第14讲 归类示例 解 1 y x2 4x 3 x2 4x 4 3 4 x 2 2 1 2 由 1 知图象的对称轴为直线x 2 顶点坐标为 2 1 列表 描点作图如下图 3 y1 y2 4 如图 点c d的横坐标x3 x4即为方程x2 4x 3 2的根 第14讲 归类示例 变式题1 2012 烟台 已知二次函数y 2 x 3 2 1 下列说法 其图象的开口向下 其图象的对称轴为直线x 3 其图象的顶点坐标为 3 1 当x 3时 y随x的增大而减小 则其中说法正确的有 a 1个b 2个c 3个d 4个 a 解析 2 0 图象的开口向上 故本说法错误 图象的对称轴为直线x 3 故本说法错误 其图象顶点坐标为 3 1 故本说法错误 当x 3时 y随x的增大而减小 本说法正确 综上所述 说法正确的只有 共1个 故选a 第14讲 归类示例 变式题2 2012 泰安 设a 2 y1 b 1 y2 c 2 y3 是抛物线y x 1 2 a上的三点 则y1 y2 y3的大小关系为 a y1 y2 y3b y1 y3 y2c y3 y2 y1d y3 y1 y2 a 解析 根据二次函数的图象的对称性 找出点a的对称点a 再利用二次函数的增减性可判断y值的大小 函数的关系式是y x 1 2 a 图象如图 对称轴是直线x 1 点a关于对称轴的对称点a 是点 0 y1 那么点a b c都在对称轴的右边 而对称轴右边y随x的增大而减小 于是y1 y2 y3 故选a 第14讲 归类示例 类型之三二次函数的解析式的求法 例3已知抛物线经过点a 5 0 b 1 0 且顶点的纵坐标为 求二次函数的解析式 第14讲 归类示例 命题角度 1 一般式 顶点式 交点式 2 用待定系数法求二次函数的解析式 解析 根据题目要求 本题可选用多种方法求关系式 第14讲 归类示例 第14讲 归类示例 第14讲 归类示例 第14讲 归类示例 二次函数的关系式有三种 1 一般式y ax2 bx c 2 顶点式y a x m 2 n 其中 m n 为顶点坐标 3 交点式y a x x1 x x2 其中 x1 0 x2 0 为抛物线与x轴的交点 一般已知三点坐标用一般式求关系式 已知顶点及另一个点坐标用顶点式 已知抛物线与x轴的两个交点坐标及另一个点的坐标用交点式 此题属于第三种情形 第15讲 二次函数与一元二次方程 第15讲二次函数与一元二次方程 第15讲 考点聚焦 考点1二次函数与一元二次方程的关系 不相等 相等 没有 第15讲 考点聚焦 考点2二次函数y ax2 bx c a 0 的图象特征与a b c及判别式b2 4ac的符号之间的关系 第15讲 考点聚焦 第15讲 考点聚焦 考点3二次函数图象的平移 将抛物线y ax2 bx c a 0 用配方法化成y a x h 2 k a 0 的形式 而任意抛物线y a x h 2 k均可由抛物线y ax2平移得到 具体平移方法如图15 1 图15 1 第15讲 考点聚焦 注意 确定抛物线平移后的解析式最好利用顶点式 利用顶点的平移来研究图象的平移 第15讲 归类示例 类型之一二次函数与一元二次方程 命题角度 1 二次函数与一元二次方程之间的关系 2 图象法解一元二次方程 3 二次函数与不等式 组 例1抛物线y x2 4x m与x轴的一个交点的坐标为 1 0 则此抛物线与x轴的另一个交点的坐标是 3 0 解析 把 1 0 代入y x2 4x m中 得m 3 所以原方程为y x2 4x 3 令y 0 解方程x2 4x 3 0 得x1 1 x2 3 抛物线与x轴的另一个交点的坐标是 3 0 类型之二二次函数的图象的平移 命题角度 1 二次函数的图象的平移规律 2 利用平移求二次函数的图象的关系式 第15讲 归类示例 例2 2012 扬州 将抛物线y x2 1先向左平移2个单位 再向下平移3个单位 那么所得抛物线的函数关系式是 a y x 2 2 2b y x 2 2 2c y x 2 2 2d y x 2 2 2 b 解析 抛物线y x2 1的顶点为 0 1 将点 0 1 先向左平移2个单位 再向下平移3个单位所得到的点的坐标为 2 2 所以平移后抛物线的关系式为y x 2 2 2 故选b 第15讲 归类示例 1 采用由 点 带 形 的方法 图形在平移时 图形上的每一个点都按照相同的方向移动相同的距离 抛物线的平移问题往往可转化为顶点的平移问题来解决 2 平移的变化规律可为 1 上 下平移 当抛物线y a x h 2 k向上平移m m 0 个单位后 所得的抛物线的关系式为y a x h 2 k m 当抛物线y a x h 2 k向下平移m m 0 个单位后 所得的抛物线的关系式为y a x h 2 k m 2 左 右平移 当抛物线y a x h 2 k向左平移n n 0 个单位后 所得的抛物线的关系式为y a x h n 2 k 当抛物线y a x h 2 k向右平移n n 0 个单位后 所得的抛物线的关系式为y a x h n 2 k 第15讲 归类示例 例3 2012 广安 如图15 2 把抛物线y 0 5x2平移得到抛物线m 抛物线m经过点a 6 0 和原点 0 0 它的顶点为p 它的对称轴与抛物线y 0 5x2交于点q 则图中阴影部分的面积为 图15 2 第15讲 归类示例 第15讲 归类示例 变式题 2011 绵阳改编 已知抛物线 y x2 2x m 1与x轴只有一个交点 且与y轴交于a点 如图15 3 设它的顶点为b 1 求m的值 2 过a作x轴的平行线 交抛物线于点c 求证 abc是等腰直角三角形 3 将此抛物线向下平移4个单位后 得到抛物线c 且与x轴的左半轴交于e点 与y轴交于f点 求抛物线c 的关系式和直线ef的关系式 图15 3 第15讲 归类示例 解 1 抛物线与x轴只有一个交点 说明 0 m 2 2 证明 抛物线的关系式是y x2 2x 1 a 0 1 b 1 0 aob是等腰直角三角形 又ac ob bac oba 45 a c是关于对称轴x 1的对称点 ab bc abc是等腰直角三角形 类型之三二次函数的图象特征与a b c之间的关系 例4 2012 重庆 已知二次函数y ax2 bx c a 0 的图象如图15 4所示 对称轴x 下列结论中 正确的是 a abc 0b a b 0c 2b c 0d 4a c 2b 第15讲 归类示例 命题角度 1 二次函数的图象的开口方向 对称轴 顶点坐标 与坐标轴的交点情况与a b c的关系 2 图象上的特殊点与a b c的关系 图15 4 d 第15讲 归类示例 第15讲 归类示例 二次函数的图象特征主要从开口方向 与x轴有无交点 与y轴的交点及对称轴的位置 确定a b c及b2 4ac的符号 有时也可把x的值代入 根据图象确定y的符号 类型之四二次函数的图象与性质的综合运用 例5 2012 连云港 如图15 5 抛物线y x2 bx c与x轴交于a b两点 与y轴交于点c 点d为抛物线的顶点 点e在抛物线上 点f在x轴上 四边形ocef为矩形 且of 2 ef 3 1 求该抛物线所对应的函数关系式 第15讲 归类示例 命题角度 二次函数的图象与性质的综合运用 2 求 abd的面积 3 将三角形aoc绕点c逆时针旋转90 点a对应点为点g 问点g是否在该抛物线上 请说明理由 第15讲 归类示例 图15 5 第15讲 归类示例 解析 1 在矩形ocef中 已知of ef的长 先表示出c e的坐标 然后利用待定系数法确定该函数的关系式 2 根据 1 的函数关系式求出a b d三点的坐标 以ab为底 d点纵坐标的绝对值为高 可求出 abd的面积 3 首先根据旋转条件求出g点的坐标 然后将点g的坐标代入抛物线对应的函数关系式中直接进行判断即可 第15讲 归类示例 第15讲 归类示例 1 二次函数的图象是抛物线 是轴对称图形 充分利用抛物线的轴对称性 是研究利用二次函数的性质解决问题的关键 2 已知二次函数图象上几个点的坐标 一般用待定系数法直接列方程 组 求二次函数的解析式 3 已知二次函数图象上的点 除顶点外 和对称轴 便能确定与此点关于对称轴对称的另一点的坐标 第16讲 二次函数的应用 第16讲二次函数的应用 第16讲 考点聚焦 考点1二次函数的应用 二次函数的应用关键在于建立二次函数的数学模型 这就需要认真审题 理解题意 利用二次函数解决实际问题 应用最多的是根据二次函数的最值确定最大利润 最节省方案等问题 第16讲 考点聚焦 考点2建立平面直角坐标系 用二次函数的图象解决实际问题 建立平面直角坐标系 把代数问题与几何问题进行互相转化 充分结合三角函数 解直角三角形 相似 全等 圆等知识解决问题 求二次函数的解析式是解题关键 第16讲 归类示例 类型之一利用二次函数解决抛物线形问题 命题角度 1 利用二次函数解决导弹 铅球 喷水池 抛球 跳水等抛物线形问题 2 利用二次函数解决拱桥 护栏等问题 例1 2012 安徽 如图16 1 排球运动员站在点o处练习发球 将球从o点正上方2m的a处发出 把球看成点 其运行的高度y m 与运行的水平距离x m 满足关系式y a x 6 2 h 已知球网与o点的水平距离为9m 高度为2 43m 球场的边界距o点的水平距离为18m 第16讲 归类示例 1 当h 2 6时 求y与x的关系式 不要求写出自变量x的取值范围 2 当h 2 6时 球能否越过球网 球会不会出界 请说明理由 3 若球一定能越过球网 又不出边界 求h的取值范围 图16 1 第16讲 归类示例 解析 1 根据h 2 6和函数图象经过点 0 2 可用待定系数法确定二次函数的关系式 2 要判断球是否过球网 就是求x 9时对应的函数值 若函数值大于或等于网高2 43 则球能过网 反之则不能 要判断球是否出界 就是求抛物线与x轴的交点坐标 若该交点坐标小于或等于18 则球不出界 反之就会出界 要判断球是否出界 也可以求出x 18时对应的函数值 并与0相比较 3 先根据函数图象过点 0 2 建立h与a之间的关系 从而把二次函数化为只含有字母系数h的形式 要求球一定能越过球网 又不出边界时h的取值范围 结合函数的图象 就是要同时考虑当x 9时对应的函数y的值大于2 43 且当x 18时对应的函数y的值小于或等于0 进而确定h的取值范围 第16讲 归类示例 第16讲 归类示例 第16讲 归类示例 第16讲 归类示例 利用二次函数解决抛物线形问题 一般是先根据实际问题的特点建立直角坐标系 设出合适的二次函数的解析式 把实际问题中已知条件转化为点的坐标 代入解析式求解 最后要把求出的结果转化为实际问题的答案 类型之二二次函数在营销问题方面的应用 命题角度 二次函数在销售问题方面的应用 第16讲 归类示例 例2 2012 淮安 国家和地方政府为了提高农民种粮的积极性 每亩地每年发放种粮补贴120元 种粮大户老王今年种了150亩地 计划明年再承租50 150亩土地种粮以增加收入 考虑各种因素 预计明年每亩种粮成本y 元 与种粮面积x 亩 之间的函数关系如图16 2所示 1 今年老王种粮可获得补贴多少元 2 根据图象 求y与x之间的函数关系式 3 若明年每亩的售粮收入能达到2140元 求老王明年种粮总利润w 元 与种粮面积x 亩 之间的函数关系式 当种粮面积为多少亩时 总利润最高 并求出最高总利润 第16讲 归类示例 图16 2 第16讲 归类示例 解析 1 用每亩地每年发放种粮补贴金额乘以今年种粮面积即可求出今年老王种粮可获得的补贴 2 设出一次函数关系式 结合图象中给出的两点坐标 用待定系数法求出一次函数关系式 3 根据每亩的售粮收入加每亩地的种粮补贴减去每亩种粮成本 再乘以种粮面积x亩 可得关于x的二次函数关系式 然后利用二次函数的性质 即可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2025年标准)买卖废弃矿石协议书
- (2025年标准)水库供水协议书
- 2025年新销售渠道拓展协议书
- (2025年标准)食品返利协议书
- 教育行业会议评估报告修订服务协议
- (2025年标准)手套居间合同协议书
- (2025年标准)自愿参展协议书
- 商铺团队建设方案协议
- 劳务过程考勤管理协议
- 2026届福建省莆田市第九中学化学高一第一学期期中学业水平测试模拟试题含解析
- 《数学(第8版 上册)》 课件 第1章 运算与方程
- 《预制装配式混凝土综合管廊工程技术规程》
- 幼小衔接-认识人体-课件
- 人教部编版七年级语文上册《秋天的怀念》示范课教学课件
- 上海开放大学 《公共部门人力资源管理》作业答案
- 高职药学专业《药物化学》说课稿
- 幼教培训课件:《幼儿园如何有效组织幼儿户外自主游戏》
- 立足单元视角 提升核心素养
- 金属非金属露天矿山及尾矿库重大事故隐患判定标准解读
- 股权投资撤资通知书
- 应征公民政治考核表(含各种附表)
评论
0/150
提交评论