2019版中考数学复习 运用数形结合的思想解答与反比例函数图象有关的问题练习 鲁教版五四制.doc_第1页
2019版中考数学复习 运用数形结合的思想解答与反比例函数图象有关的问题练习 鲁教版五四制.doc_第2页
2019版中考数学复习 运用数形结合的思想解答与反比例函数图象有关的问题练习 鲁教版五四制.doc_第3页
2019版中考数学复习 运用数形结合的思想解答与反比例函数图象有关的问题练习 鲁教版五四制.doc_第4页
2019版中考数学复习 运用数形结合的思想解答与反比例函数图象有关的问题练习 鲁教版五四制.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019版中考数学复习 运用数形结合的思想解答与反比例函数图象有关的问题练习 鲁教版五四制类型一、求反比例函数图象上点的坐标如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.2、如图,点P1(x1,y1),点P2(x2,y2),点Pn(Xn,Yn)在函数(x0)的图象上,P1OA1,P2A1A2,P3A2A3,PnAn1An都是等腰直角三角形,斜边OA1、A1A2、A2A3,An1An都在x轴上(n是大于或等于2的正整数),则点P3的坐标是_;点Pn的坐标是_(用含n的式子表示)解:过点P1作P1Ex轴于点E,过点P2作P2Fx轴于点F,过点P3作P3Gx轴于点G,根据P1OA1,P2A1A2,P3A2A3都是等腰直角三角形,可求出P1,P2,P3的坐标,从而总结出一般规律得出点Pn的坐标解:过点P1作P1Ex轴于点E,过点P2作P2Fx轴于点F,过点P3作P3Gx轴于点G,P1OA1是等腰直角三角形,P1E=OE=A1E=OA1,设点P1的坐标为(a,a),(a0),将点P1(a,a)代入,可得a=1,故点P1的坐标为(1,1),则OA1=2a,设点P2的坐标为(b+2,b),将点P1(b+2,b)代入y=,可得b=1,故点P2的坐标为(+1,1),则A1F=A2F=22,OA2=OA1+A1A2=2,设点P3的坐标为(c+2,c),将点P1(c+2,c)代入y=,可得c=,故故点P3的坐标为(+,),综上可得:P1的坐标为(1,1),P2的坐标为(+1,1),P3的坐标为(+,),总结规律可得:Pn坐标为:(+,)故答案为:(+,)、(+,)变式:求y1+y2+y3+yn的值 将等腰直角三角形改为等边三角形求点Pn的坐标类型二、反比例函数与一次函数相结合的综合应用4、如图,已知一次函数y=kx+b的图象经过点P(3,2),与反比例函数y=(x0)的图象交于点Q(m,n)当一次函数y的值随x值的增大而增大时,m的取值范围是( )解:如图,过点P分别作y轴与x轴的垂线,分别交反比例函数图象于A点和B点,把y=2代入得x=1;把x=3代入得,A点坐标为(1,2),B点坐标为(3,)。一次函数y的值随x值的增大而增大,Q点只能在A点与B点之间。m的取值范围是1m3。类型三、反比例函数综合题5、直角梯形OABC中,BC/AO,AOC=900,点A、B的坐标分别为(5,0)、(2,6),点D为AB上一点,且BD=2AD.双曲线y=(x0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积。考点:反比例函数综合题分析:(1)作BMx轴于M,作DNx轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明ADNABM,利用相似比可计算出DN=2,AN=1,则ON=OA-AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC-SOCE-SOAD进行计算解答:1)过点B、D作x轴的的垂线,垂足分别为点M、N. A (5.0)、B(2,6),OM=BC=2,BM=OC=6,AM=3 DNBM,ANDABM. DN =2,AN=1, ON=4 点D的坐标为(4,2) 又 双曲线y=(x0)经过点D, k=24=8双曲线的解析式为y= (2)点E在BC上,点E的纵坐标为6. 又点E在双曲线y=上,点E的坐标为(,6),CE=S四边形ODBE=S梯形OABC-SOCE-SAOD =(BC+OA)OC-OCCE-OADN =(2+5)6-6-52 =12四边形ODBE的面积为12. 5、如图,双曲线y=(x0)经过OAB的顶点A和OB的中点C,ABx轴,点A的坐标为(2,3)(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算OAB的面积考点:函数综合题分析:(1)将A坐标代入反比例解析式求出k的值即可;(2)将D坐标代入反比例解析式求出m的值,确定出D坐标,设直线AD解析式为y=kx+b,将A与D坐标代入求出k与b的值,即可确定出直线AD解析式;(3)过点C作CNy轴,垂足为N,延长BA,交y轴于点M,得到CN与BM平行,进而确定出三角形OCN与三角形OBM相似,根据C为OB的中点,得到相似比为1:2,确定出三角形OCN与三角形OBM面积比为1:4,利用反比例函数k的意义确定出三角形OCN与三角形AOM面积,根据相似三角形面积之比为1:4,求出三角形AOB面积即可解答:(1)将点A(2,3)代入解析式y=,得:k=6;(2)将D(3,m)代入反比例解析式y=,得:m=2,点D坐标为(3,2),设直线AD解析式为y=kx+b,将A(2,3)与D(3,2)代入得:,解得:k=1,b=5,则直线AD解析式为y=x+5;(3)过点C作CNy轴,垂足为N,延长BA,交y轴于点M,ABx轴,BMy轴,MBCN,OCNOBM,C为OB的中点,即=,=()2,A,C都在双曲线y=上,SOCN=SAOM=3,由=,得到SAOB=9,则AOB面积为9点评:此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,相似三角形的判定与性质,以及反比例函数k的意义,熟练掌握待定系数法是解本题的关键6、如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D(1)求的值;ABCDOxy(2)求的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值【解析】(1)由反比例函数的图象经过点A(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论