![[计算机软件及应用]dsp-第6章II.ppt_第1页](http://file.renrendoc.com/FileRoot1/2019-1/2/c13f80d9-4cb4-4572-82a8-861bab606637/c13f80d9-4cb4-4572-82a8-861bab6066371.gif)
![[计算机软件及应用]dsp-第6章II.ppt_第2页](http://file.renrendoc.com/FileRoot1/2019-1/2/c13f80d9-4cb4-4572-82a8-861bab606637/c13f80d9-4cb4-4572-82a8-861bab6066372.gif)
![[计算机软件及应用]dsp-第6章II.ppt_第3页](http://file.renrendoc.com/FileRoot1/2019-1/2/c13f80d9-4cb4-4572-82a8-861bab606637/c13f80d9-4cb4-4572-82a8-861bab6066373.gif)
![[计算机软件及应用]dsp-第6章II.ppt_第4页](http://file.renrendoc.com/FileRoot1/2019-1/2/c13f80d9-4cb4-4572-82a8-861bab606637/c13f80d9-4cb4-4572-82a8-861bab6066374.gif)
![[计算机软件及应用]dsp-第6章II.ppt_第5页](http://file.renrendoc.com/FileRoot1/2019-1/2/c13f80d9-4cb4-4572-82a8-861bab606637/c13f80d9-4cb4-4572-82a8-861bab6066375.gif)
已阅读5页,还剩81页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 利用模拟滤波器设计IIR数字滤波器设计过程 IIR数字滤波器设计 设计技术成熟有相当简便的公式和图表 要求DF特性模仿AF的特性 实际上是个映射问题Mapping 2 转换后的H z 稳定且满足技术要求 对转换关系提出两点要求 1 因果稳定的模拟滤波器转换成数字滤波器 仍是因果稳定的 2 数字滤波器的频率响应模仿模拟滤波器的频响 s平面的虚轴映射z平面的单位圆 相应的频率之间成线性关系 3 两种常用的映射变换方法 一 脉冲响应不变法二 双线性变换法 4 利用模拟滤波器理论设计数字滤波器 也就是使数字滤波器能模仿模拟滤波的特性 这种模仿可从不同的角度出发 脉冲响应不变法是从滤波器的脉冲响应出发 使数字滤波器的单位脉冲响应序列h n 正好等于模拟滤波器的冲激响应ha t 的采样值 即h n ha nT T为采样周期 如以Ha s 及H z 分别表示ha t 的拉氏变换及h n 的Z变换 即Ha s LT ha t H z ZT h n Ha s LT 1 Ha s ha t 时域采样 h n ZT h n H z 所以说脉冲响应不变法是一种时域上的变换方法 6 3用脉冲响应不变法设计 5 计算H Z 脉冲响应不变法特别适用于用部分分式表达传递函数 模拟滤波器的传递函数若只有单阶极点 且分母的阶数高于分子阶数N M 则可表达为部分分式形式 其拉氏反变换为 单位阶跃对ha t 采样得到数字滤波器的单位脉冲响应序列 6 再对h n 取Z变换 得到数字滤波器的传递函数 第二个求和为等比级数之和 要收敛的话 所以有 必有 7 比较看到 S平面上的极点S Si变换到Z平面上是极点 而Ha s 与H Z 中部分分式所对应的系数不变 但要注意 这种Ha s 到H Z 的对应变换关系 只有将Ha s 表达为部分分式形式才成立 稳定性 如果模拟滤波器是稳定的 则所有极点Si都在S左半平面 即Re si 0 那么变换后H Z 的极点也都在单位圆以内 即 因此数字滤波器保持稳定 8 根据理想采样序列拉氏变换与模拟信号拉氏变换的关系 理想采样的拉氏变换与模拟信号的拉氏变换之间的关系 理想采样的拉氏变换与采样序列的Z变换之间存在的S平面与Z平面的映射关系 9 s平面与z平面的映射关系 10 以上表明 采用脉冲响应不变法将模拟滤波器变换为数字滤波器时 它所完成的S平面到Z平面的变换 正是以前所讨论的拉氏变换到Z变换的标准变换关系 即首先对Ha s 作周期延拓 然后再经过的映射关系映射到Z平面上 11 映射关系 S平面上每一条宽为的横带部分 都将重叠地映射到Z平面的整个平面上 每一横带的左半部分映射到Z平面单位圆以内 每一横带的右半部分映射到Z平面单位圆以外 轴映射到单位圆上 轴上每一段都对应于绕单位圆一周 12 S平面 Z平面 13 应指出 Z esT的映射关系反映的是Ha s 的周期延拓与H Z 的关系 而不是Ha s 本身与H Z 的关系 因此 使用脉冲响应不变法时 从Ha s 到H z 并没有一个由S平面到Z平面的一一对应的简单代数映射关系 即没有一个S f z 代数关系式 混迭 由 式 还可看到 数字滤波器的频响并不是简单的重现模拟滤波器的频响 而是模拟滤波器频响的周期延拓 周期为 14 正如第一章的采样定律中所讨论的 如果模拟滤波器的频响带限于折叠频率 S 2以内 即 15 这时数字滤波器的频响才能不失真地重现模拟滤波器的频响 存在于折叠频率 S 2以内 但任何一个实际的模拟滤波器 其频响都不可能是真正带限的 因此不可避免地存在频谱的交叠 即混淆 如图 这时 数字滤波器的频响将不同于原模拟滤波器的频响而带有一定的失真 模拟滤波器频响在折叠频率以上衰减越大 失真则越小 这时 采用脉冲响应不变法设计的数字滤波器才能得到良好的效果 16 脉冲响应不变法中的频响混淆 17 例 将一个具有如下传递函数的模拟滤波器数字化 解 18 模拟滤波器的频率响应为 19 数字滤波器的频率响应为 显然与采样间隔T有关T越小 衰减越大 混叠越小 当fs 24Hz 混叠可忽略不计 为什么混迭呢 20 21 实际应用中的问题 1 实用公式 此时 22 2 复数乘法器的问题 23 若AF的二阶基本节的形式为 则相应的DF的二阶节的形式为 24 若AF的二阶基本节的形式为 则相应的DF的二阶节的形式为 25 脉冲响应不变法的优缺点 优点 1 频率变换是线性关系 w T 模数字滤波器可以很好重现模拟滤波器的频响特性 2 数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应 时域特性逼近好 3 如果Ha s 是稳定的 即其极点在S左半平面 映射后得到的H Z 也是稳定的 26 缺点 1 有频谱混迭失真现象 S平面到 Z平面有多值映射关系 因此只能用于带限的频响特性 如衰减特性很好的低通或带通 而高频衰减越大 频响的混淆效应越小 至于高通和带阻滤波器 由于它们在高频部分不衰减 因此将完全混淆在低频响应中 2 由于频谱混迭 使应用受到限制 T 失真 但运算量 实现困难 27 6 4双线性变换法 脉冲响应不变法的主要缺点是频谱交叠产生的混淆 这是从S平面到Z平面的标准变换z esT的多值对应关系导致的 为了克服这一缺点 设想变换分为两步 第一步 将整个S平面压缩到S1平面的一条横带里 第二步 通过标准变换关系将此横带变换到整个Z平面上去 由此建立S平面与Z平面一一对应的单值关系 消除多值性 也就消除了混淆现象 28 29 双线性变换法消除频谱混迭的原理 非线性压缩 S平面 S1平面映射 双线性变换法用正切变换实现非线性频率压缩 设Ha s s j 经过非线性频率压缩后用Ha s1 s1 j 1表示 则 上式表明 当 1从 T经过0变化到 T时 则由 经过0变化到 这样实现了s平面上整个虚轴完全压缩到s1平面上虚轴的 T之间的转换 T 时域采样间隔 30 将这一关系解析扩展至整个S平面 则得S平面到S1平面的映射关系 再将S1平面通过标准变换关系映射到Z平面 即令 31 考虑z ej 32 最后得S平面与Z平面的单值映射关系 双线性换法的主要优点是S平面与Z平面一一单值对应 S平面的虚轴 整个j 对应于Z平面单位圆的一周 S平面的 0处对应于Z平面的 0处 对应即数字滤波器的频率响应终止于折迭频率处 所以双线性变换不存在混迭效应 通常取C 2 T 33 现在我们看看 这一变换是否符合我们一开始提出的由模拟滤波器设计数字滤波器时 从S平面到Z平面映射变换的二个基本要求 当时 代入 1 式 得 对单位圆 即S平面的虚轴映射到Z平面正好是单位圆 34 代入 2 式 35 即s左半平面映射在单位圆内 s右半平面映射在单位圆外 因此稳定的模拟滤波器通过双线性变换后 所得到的数字滤波器也是稳定的 如图1 图双线性变换的频率非线性关系 36 1 与脉冲响应不变法相比 双线性变换的主要优点 S平面与Z平面是单值的一一对应关系 靠频率的严重非线性关系得到的 即整个j 轴单值的对应于单位圆一周 关系式为 可见 和 为非线性关系 37 说明 s平面上 与z平面的 成非线性正切关系 当 增加时 增加得很快 当 趋于 时 趋于 由于这种非线性关系 消除了频率混叠现象 代价 影响数字滤波器频响逼真模拟滤波器的频响的逼真度 存在幅度失真和相位失真 38 2 与 成非线性关系 会导致 a 数字滤波器的幅频响应相对于模拟滤波器的幅频响应有畸变 使数字滤波器与模拟滤波器在响应与频率的对应关系上发生畸变 例如 一个模拟微分器 它的幅度与频率是直线关系 但通过双线性变换后 就不可能得到数字微分器 39 b 线性相位模拟滤波器经双线性变换后 得到的数字滤波器为非线性相位 c 要求模拟滤波器的幅频响应必须是分段恒定的 故双线性变换只能用于设计低通 高通 带通 带阻等选频滤波器 40 41 虽然双线性变换有这样的缺点 但它目前仍是使用得最普遍 最有成效的一种设计工具 这是因为大多数滤波器都具有分段常数的频响特性 如低通 高通 带通和带阻等 它们在通带内要求逼近一个衰减为零的常数特性 在阻带部分要求逼近一个衰减为 的常数特性 这种特性的滤波器通过双线性变换后 虽然频率发生了非线性变化 但其幅频特性仍保持分段常数的特性 42 例如 一个考尔型的模拟滤波器Ha s 双线性变换后 得到的H z 在通带与阻带内都仍保持与原模拟滤波器相同的等起伏特性 只是通带截止频率 过渡带的边缘频率 以及起伏的峰点 谷点频率等临界频率点发生了非线性变化 即畸变 这种频率点的畸变可以通过预畸来加以校正 43 五 双线性变换法的预畸变 对边缘临界频率点产生的畸变 可通过频率的预畸变加以校正 例 数字低通滤波器的两个截止频率 p和 s 如果按照线性变换所对应的模拟滤波器的截止频率分别为 再利用非线性的频率变换公式 得到的数字滤波器的截止频率就不等于原来的频率 解决方法 数字频率转换成模拟频率时 先进行预畸变的处理 p p T s s T 44 双线性变换时频率的预畸 45 计算H Z 双线性变换比脉冲响应法的设计计算更直接和简单 由于s与z之间的简单代数关系 所以从模拟传递函数可直接通过代数置换得到数字滤波器的传递函数 置换过程 频响 46 这些都比脉冲响应不变法的部分分式分解便捷得多 一般 当着眼于滤波器的时域瞬态响应时 采用脉冲响应不变法较好 而其他情况下 对于IIR的设计 大多采用双线性变换 47 对于采样间隔T的选择 脉冲响应不变法 双线性变换法 T可任意取 48 例1 设采样周期 设计一个三阶巴特沃兹LP滤波器 其3dB截止频率fc 1khz 分别用脉冲响应不变法和双线性变换法求解 解 a 脉冲响应不变法由于脉冲响不变法的频率关系是线性的 所以可直接按 c 2 fc设计Ha s 根据上节的讨论 以截止频率 c归一化的三阶巴特沃兹滤波器的传递函数为 以代替其归一化频率 得 49 为进行脉冲响应不变法变换 计算Ha S 分母多项式的根 将上式写成部分分式结构 对照前面学过的脉冲响应不变法中的部分分式形式有将上式部分系数代入数字滤波器的传递函数 50 并将代入 得 合并上式后两项 并将代入 计算得 51 可见 H Z 与采样周期T有关 T越小 H Z 的相对增益越大 这是不希望的 为此 实际应用脉冲响应不变法时稍作一点修改 即求出H Z 后 再乘以因子T 使H Z 只与fc fs有关 即只与fc和fs的相对值wc有关 而与采样频率fs无直接关系 例如 的数字滤波器具有相同的传递函数 这一结论适合于所有的数字滤波器设计 52 b 双线性变换法 一 首先确定数字域临界频率 二 根据频率的非线性关系 确定预畸的模拟滤波器临界频率 三 以s c代入归一化的三阶巴特沃模拟器传递函数并将 c 2 T代入上式 四 将双线性变换关系代入 求H Z 53 54 图1为两种设计方法所得到的频响 对于双线性变换法 由于频率的非线性变换 使截止区的衰减越来越快 最后在折叠频率处形成一个三阶传输零点 这个三阶零点正是模拟滤波器在处的三阶传输零点通过映射形成的 因此 双线性变换法使过渡带变窄 对频率的选择性改善 而脉冲响应不变法存在混淆 且没有传输零点 脉冲响应不变法 双线性变换法 55 56 6 5数字高通 带通和带阻滤波器的设计 57 设计高通 带通 带阻等数字滤波器的两种方法 先设计一个相应的高通 带通或带阻模拟滤波器 然后通过脉冲响应不变法或双线性变换法转换为数字滤波器 模拟原型模拟高通 带通 带阻数字高通 带通 带阻设计方法同上面讨论的低通滤波器的设计 即确定转换为相应的高通 带通 带阻模拟滤波器的设计Ha s H Z 58 直接利用模拟滤波器的低通原型 通过一定的频率变换关系 一步完成各种数字滤波器的设计 频率变换模拟低通原型数字低通 高通 带通 带阻 59 模拟AF的频率变换 模拟高通 带通 带阻滤波器的设计 模拟高通 带通 带阻滤波器的设计指标 模拟低通滤波器的技术指标 设计模拟低通滤波器的传输函数 相应的模拟高通 带通 带阻滤波器的传输函数 60 一 低通到高通的频率变换 假设低通传输函数用G s 表示 s j 归一化 频率用表示 p j p称为归一化拉氏复变量 所需类型 例如高通 滤波器的传输函数用H s 表示 s j 归一化频率用表示 令q j并将q称为归一化拉氏变量 H q 称为归一化传输函数 61 低通到高通的频率变换公式 低通G j 和高通H j 转换公式 62 二 模拟高通滤波器的设计步骤 1 确定高通滤波器的技术指标 通带下限频率 阻带上限频率 通带最大衰减 阻带最小衰减 63 2 确定相应低通滤波器的技术指标 1 LF通带截止频率 2 LF阻带截止频率 3 通带最大衰减仍为 阻带最小衰减仍为 64 3 设计归一化低通滤波器G p 4 求模拟高通的H s 高通的3dB截止频率 或者 65 三 数字高通滤波器的设计步骤 1 确定数字高通滤波器的技术指标 2 将数字高通滤波器的技术指标转换成相应的模拟高通高通滤波器的技术指标 66 3 设计模拟高通滤波器 由模拟低通设计模拟高通 4 采用双线性变换将模拟高通滤波器转换成数字高通滤波器 67 例 要设计一巴特沃斯高通滤波器 其通带截止频率 3dB点处 为3kHz 阻带上限截止频率 2kHz 通带衰减不大于3dB 阻带衰减不小于14dB 抽样频率 10KHz 其幅频特性如图所示 68 2 模拟高通的技术指标 令T 1 69 3 模拟低通滤波器的技术指标 4 设计归一化的模拟低通滤波器G p 这里对3dB截止频率归一化 70 令 则N可表示为 查表得归一化低通传输函数G p 去归一化得到G s 71 5 将模拟低通转换成模拟高通 6 采用双线性变换将模拟高通滤波器转换成数字高通滤波器 72 变换方法的选用 脉冲响应不变法 对于高通 带阻等都不能直接采用 或只能在加了保护滤波器后才可使用 因此 使用直接频率变换 第二种方法 对脉冲响应不变法要有许多特殊的考虑 它一般应用于第一种方法中 双线性变换法 下面的讨论均用此方法 实际使用中多数情况也是如此 第二种方法因其简捷便利 所以得到普遍采用 73 基于双线性变换法的高通滤波器设计 在模拟滤波器的高通设计中 低通至高通的变换就是S变量的倒置 这一关系同样可应用于双
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桡骨头骨折课件
- 2025年公务员考试练习题考试练习题及答案指导
- 2025年融媒体舆情分析笔试高频考点解析集
- 桌球培训课程内容
- 2025年篮球规则试题及答案
- 2025年篮球明星试题及答案
- 2025年注册验船师资格考试(A级船舶检验专业案例分析)综合试题及答案二
- 桃红葡萄酒发酵工艺
- 2025年视觉设计岗位面试常见题
- 栽蒜苗课件教学课件
- 学校公文写作培训
- 药品责任赔偿管理制度
- 中国2030年能源电力发展规划研究及2060年展望
- 子公司设立管理制度
- 阿氏圆教学课件
- 陇南市成县县属国有企业招聘笔试真题2024
- 公安擒拿教学课件
- 内蒙古自治区“十五五”农牧业发展计划
- 中等职业学校幼儿保育专业《婴幼儿行为观察与引导》课程标准
- 产后耻骨护理
- JG/T 197-2018预应力混凝土空心方桩
评论
0/150
提交评论