




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数应用课后作业1、某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A B C D2、如图所示,抛物线y=ax2+bx+c(a0)与x轴交于点A(-2,0)、B(1,0),直线x=-0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:a-b=0; 当-2x1时,y0;四边形ACBD是菱形;9a-3b+c0你认为其中正确的是()A B C D3、某商品现在的售价为每件60元,每星期可卖出300件市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()Ay=60(300+20x)By=(60-x)(300+20x)Cy=300(60-20x)Dy=(60-x)(300-20x)4、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AEx轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm,则右轮廓DFE所在抛物线的解析式为()Ay=(x+3)2 By=(x-3)2 Cy=-(x+3)2 Dy=-(x-3)25、如图,半圆A和半圆B均与y轴相切于O,其直径CD,EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分面积是()A B C D条件不足,无法求6、某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=-x2+2x+,则下列结论:(1)柱子OA的高度为 m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外其中正确的有()A1个 B2个 C3个 D4个7、如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为 米8、某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a0)未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元通过市场调研发现,该时装单价每降1元,每天销量增加4件在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为 9、已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃设花圃的宽AB为x米,面积为S米2则S与x的函数关系式 ;自变量的取值范围 10、某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?11、某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售市场调查反映:每降价1元,每星期可多卖30件已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?12、九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1x90,且x为整数)的售价与销售量的相关信息如下已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元) 时间x(天)1306090每天销售量p(件)1981408020(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果参考答案1、解析:先求出AEF和DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式解:SAEF=AEAF=x2,SDEG=DGDE=1(3-x)=,S五边形EFBCG=S正方形ABCD-SAEF-SDEG=9-x2-=-x2+x+,则y=4(-x2+x+)=-2x2+2x+30,AEAD,x3,综上可得:y=-2x2+2x+30(0x3)故选:A2、解析:由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=-=-0.5,由此即可得出a=b,正确;根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当-2x1时,y0,正确;由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CDAB,即可得出四边形ACBD是菱形,正确;根据当x=-3时,y0,即可得出9a-3b+c0,错误综上即可得出结论解:抛物线y=ax2+bx+c(a0)与x轴交于点A(-2,0)、B(1,0),该抛物线的对称轴为x=-=-0.5,a=b,a-b=0,正确;抛物线开口向下,且抛物线与x轴交于点A(-2,0)、B(1,0),当-2x1时,y0,正确;点A、B关于x=0.5对称,AM=BM,又MC=MD,且CDAB,四边形ACBD是菱形,正确;当x=-3时,y0,即y=9a-3b+c0,错误综上可知:正确的结论为故选D3、解析:根据降价x元,则售价为(60-x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量售价,根据等量关系列出函数解析式即可解:降价x元,则售价为(60-x)元,销售量为(300+20x)件,根据题意得,y=(60-x)(300+20x),故选:B 4、解析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(-3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式解:高CH=1cm,BD=2cm,且B、D关于y轴对称,D点坐标为(1,1),ABx轴,AB=4cm,最低点C在x轴上,AB关于直线CH对称,左边抛物线的顶点C的坐标为(-3,0),右边抛物线的顶点F的坐标为(3,0),设右边抛物线的解析式为y=a(x-3)2,把D(1,1)代入得1=a(1-3)2,解得a=,右边抛物线的解析式为y=(x-3)2,故选:B5、解析:观察图形在y轴两边阴影部分面积,将y轴左边的阴影对称到右边得到一个半圆的阴影,就是所求的图中阴影面积解:由分析知图中阴影面积等于半圆的面积,则s=故选B 6、解析:在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x轴,y轴的交点,解答题目的问题解:当x=0时,y=,故柱子OA的高度为m;(1)正确;y=-x2+2x+=-(x-1)2+2.25,顶点是(1,2.25),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是2.25米;故(2)正确,(3)错误;解方程-x2+2x+=0,得x1=-,x2=,故水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外,(4)正确故选:C7、解析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(-2,0),到抛物线解析式得出:a=-0.5,所以抛物线解析式为y=-0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1代入抛物线解析式得出:-1=-0.5x2+2,解得:x=,所以水面宽度增加到2米,故答案为:2米 8、解析:根据题意可以列出相应的不等式,从而可以解答本题解:设未来30天每天获得的利润为y,y=(110-40-t)(20+4t)-(20+4t)a化简,得y=-4t2+(260-4a)t+1400-20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,29.5解得,a6,又a0,即a的取值范围是:0a69、解析:可先用篱笆的长表示出BC的长,然后根据矩形的面积=长宽,得出S与x的函数关系式解:由题可知,花圃的宽AB为x米,则BC为(24-3x)米这时面积S=x(24-3x)=-3x2+24x024-3x10得x8,故答案为:S=-3x2+24x,x810、解析:(1)设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;(2)根据题意结合销量每本的利润=150,进而求出答案;(3)根据题意结合销量每本的利润=w,进而利用二次函数增减性求出答案解:(1)设y=kx+b,把(22,36)与(24,32)代入得:22k+b36, 24k+b32解得:k2, b80,则y=-2x+80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意得:(x-20)y=150,则(x-20)(-2x+80)=150,整理得:x2-60x+875=0,(x-25)(x-35)=0,解得:x1=25,x2=35(不合题意舍去),答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x-20)(-2x+80)=-2x2+120x-1600=-2(x-30)2+200,此时当x=30时,w最大,又售价不低于20元且不高于28元,x30时,y随x的增大而增大,即当x=28时,w最大=-2(28-30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元11、解析:(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题(3)列出不等式先求出售价的范围,再确定销售数量即可解决问题解:(1)y=300+30(60-x)=-30x+2100(2)设每星期利润为W元,W=(x-40)(-30x+2100)=-30(x-55)2+6750x=55时,W最大值=6750每件售价定为55元时,每星期的销售利润最大,最大利润6750元(3)由题意(x-40)(-30x+2100)6480,解得52x58,当x=52时,销售300+308=540,当x=58时,销售300+302=360,该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件12、解析:(1)当1x50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50x90时,y=90再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题当1x50时,结合二次函数的性质即可求出在此范围内w的最大值;当50x90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论解:(1)当1x50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k0),y=kx+b经过点(0,40)、(50,90),b40, 50k+b90,解得:k1, b40,售价y与时间x的函数关系式为y=x+40;当50x90时,y=90售价y与时间x的函数关系式为由数据可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m0),p=mx+n过点(60,80)、(30,140),60m+n80,30m+n140,解得:m2, n200p=-2x+200(0x90,且x为整数),当1x50时,w=(y-30)p=(x+40-30)(-2x+200)=-2x2+180x+2000;当50x90时,w=(90-30)(-2x+200)=-120x+12000综上所示,每天的销售利润w与时间x的函数关系式是(2)当1x50时,w=-2x2+180x+2000=-2(x-45)2+6050,a=-20且1x50,当x=45时,w取最大值,最大值为6050元当50x90时,w=-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 名校教研联盟2025届高考仿真模拟卷-物理试题+答案
- 2024年海南省三亚市白沙黎族自治县数学三年级第一学期期末教学质量检测模拟试题含解析
- 首都医学发展科研基金
- 工程施工安全体系建设试题及答案
- 对数与对数函数的应用课件:探索数学的奥秘
- 中班幼儿爬山安全自救教案
- 知识架构梳理2025年试题及答案
- 2025年钱包、座套相关皮革制品项目建议书
- 《GIS数据库设计》课件:构建高效空间数据管理体系
- 企业安保系统培训课件
- 露营地合伙人合同协议书范本
- 人人学点营销学(请分别进入班级观看视频不要在默认班级观看观看无效)学习通超星期末考试答案章节答案2024年
- 高效能人士的七个习惯(课件)
- 2024年315消费者权益保护知识竞赛题库及答案(完整版)
- 2024年离婚不离家互不干涉的婚姻协议书范文
- 保证不分手不离婚的协议书范文
- 水质监测服务投标方案(技术标)
- 内容质量评价体系
- 2025年中考作文试题预测及范文
- 2024年贵州六盘水市中考道德与法治试卷真题(含答案详解)
- DB50-T 1649-2024 餐饮业菜品信息描述规范
评论
0/150
提交评论