反比例函数选择压轴题精选.doc_第1页
反比例函数选择压轴题精选.doc_第2页
反比例函数选择压轴题精选.doc_第3页
反比例函数选择压轴题精选.doc_第4页
反比例函数选择压轴题精选.doc_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.2014年瓶窑一中初三数学余高自主招生考试辅导材料反比例之选择题 姓名: 一选择题(共20小题)1(2013重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数(k0,x0)的图象与正方形的两边AB、BC分别交于点M、N,NDx轴,垂足为D,连接OM、ON、MN下列结论:OCNOAM;ON=MN;四边形DAMN与MON面积相等;若MON=45,MN=2,则点C的坐标为(0,)其中正确结论的个数是()A1B2C3D42(2013镇江)如图,A、B、C是反比例函数图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A4条B3条C2条D1条3(2013孝感)如图,函数y=x与函数的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D则四边形ACBD的面积为()A2B4C6D84(2013威海)如图,在平面直角坐标系中,AOB=90,OAB=30,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()Am=3nBm=nCm=nDm=n5(2013南平)如图,RtABC的顶点B在反比例函数的图象上,AC边在x轴上,已知ACB=90,A=30,BC=4,则图中阴影部分的面积是()A12BCD6(2013南宁)如图,直线y=与双曲线y=(k0,x0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k0,x0)交于点B,若OA=3BC,则k的值为()A3B6CD7(2013内江)如图,反比例函数(x0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A1B2C3D48(2013柳州)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边PAB,使A、B落在x轴上,则POA的面积是()A3B4CD9(2013荆州)如图,在平面直角坐标系中,直线y=3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k0)上将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A1B2C3D410(2013贵港)如图,点A(a,1)、B(1,b)都在双曲线y=上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()Ay=xBy=x+1Cy=x+2Dy=x+311(2012随州)如图,直线l与反比例函数y=的图象在第一象限内交于A,B两点,交x轴于点C,若AB:BC=(m1):1(m1),则OAB的面积(用m表示)为()ABCD12(2012眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线(x0)经过D点,交BC的延长线于E点,且OBAC=160,有下列四个结论:双曲线的解析式为(x0);E点的坐标是(4,8);sinCOA=;AC+OB=,其中正确的结论有()A1个B2个C3个D4个13(2012临沂)如图,若点M是x轴正半轴上任意一点,过点M作PQy轴,分别交函数y=(x0)和y=(x0)的图象于点P和Q,连接OP和OQ则下列结论正确的是()APOQ不可能等于90B=C这两个函数的图象一定关于x轴对称DPOQ的面积是(|k1|+|k2|)14(2012黄石)如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A(,0)B(1,0)C(,0)D(,0)15(2012东营)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE有下列四个结论:CEF与DEF的面积相等;AOBFOE;DCECDF;AC=BD其中正确的结论是()ABCD16(2012朝阳)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(2,3),则k的值为()A1B5C4D1或517(2012百色)如图,直线l1:x=1,l2:x=2,l3:x=3,l4:x=4,与函数y=(x0)的图象分别交于点A1、A2、A3、A4、;与函数y=的图象分别交于点B1、B2、B3、B4、如果四边形A1A2B2B1的面积记为S1,四边形A2A3B3B2的面积记为S2,四边形A3A4B4B3的面积记为S3,以此类推则S10的值是()ABCD18(2011眉山)如图,直线y=x+b(b0)与双曲线y=(x0)交于A、B两点,连接OA、OB,AMy轴于M,BNx轴于N;有以下结论:OA=OBAOMBON若AOB=45,则SAOB=k当AB=时,ONBN=1;其中结论正确的个数为()A1B2C3D419(2011乐山)如图,直线y=6x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F则AFBE=()A8B6C4D20(2010内江)如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E若四边形ODBE的面积为6,则k的值为()A1B2C3D42013年10月发哥的初中数学组卷参考答案与试题解析一选择题(共20小题)1(2013重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数(k0,x0)的图象与正方形的两边AB、BC分别交于点M、N,NDx轴,垂足为D,连接OM、ON、MN下列结论:OCNOAM;ON=MN;四边形DAMN与MON面积相等;若MON=45,MN=2,则点C的坐标为(0,)其中正确结论的个数是()A1B2C3D4考点:反比例函数综合题1904127专题:压轴题;探究型分析:根据反比例函数的比例系数的几何意义得到SONC=SOAM=k,即OCNC=OAAM,而OC=OA,则NC=AM,在根据“SAS”可判断OCNOAM;根据全等的性质得到ON=OM,由于k的值不能确定,则MON的值不能确定,所以确定ONM为等边三角形,则ONMN;根据SOND=SOAM=k和SOND+S四边形DAMN=SOAM+SOMN,即可得到S四边形DAMN=SOMN;作NEOM于E点,则ONE为等腰直角三角形,设NE=x,则OM=ON=x,EM=xx=(1)x,在RtNEM中,利用勾股定理可求出x2=2+,所以ON2=(x)2=4+2,易得BMN为等腰直角三角形,得到BN=MN=,设正方形ABCO的边长为a,在RtOCN中,利用勾股定理可求出a的值为+1,从而得到C点坐标为(0,+1)解答:解:点M、N都在y=的图象上,SONC=SOAM=k,即OCNC=OAAM,四边形ABCO为正方形,OC=OA,OCN=OAM=90,NC=AM,OCNOAM,所以正确;ON=OM,k的值不能确定,MON的值不能确定,ONM只能为等腰三角形,不能确定为等边三角形,ONMN,所以错误;SOND=SOAM=k,而SOND+S四边形DAMN=SOAM+SOMN,四边形DAMN与MON面积相等,所以正确;作NEOM于E点,如图,MON=45,ONE为等腰直角三角形,NE=OE,设NE=x,则ON=x,OM=x,EM=xx=(1)x,在RtNEM中,MN=2,MN2=NE2+EM2,即22=x2+(1)x2,x2=2+,ON2=(x)2=4+2,CN=AM,CB=AB,BN=BM,BMN为等腰直角三角形,BN=MN=,设正方形ABCO的边长为a,则OC=a,CN=a,在RtOCN中,OC2+CN2=ON2,a2+(a)2=4+2,解得a1=+1,a2=1(舍去),OC=+1,C点坐标为(0,+1),所以正确故选C点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、比例系数的几何意义和正方形的性质;熟练运用勾股定理和等腰直角三角形的性质进行几何计算2(2013镇江)如图,A、B、C是反比例函数图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A4条B3条C2条D1条考点:反比例函数综合题1904127分析:如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d解答:解:如解答图所示,满足条件的直线有4条,故选A点评:本题考查了点到直线的距离、平行线的性质、全等三角形等知识点,考查了分类讨论的数学思想解题时注意全面考虑,避免漏解3(2013孝感)如图,函数y=x与函数的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D则四边形ACBD的面积为()A2B4C6D8考点:反比例函数与一次函数的交点问题1904127专题:压轴题分析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出SAOC=SODB=2,再根据反比例函数的对称性可知:OC=OD,AC=BD,即可求出四边形ACBD的面积解答:解:过函数的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D,SAOC=SODB=|k|=2,又OC=OD,AC=BD,SAOC=SODA=SODB=SOBC=2,四边形ABCD的面积为:SAOC+SODA+SODB+SOBC=42=8故选D点评:本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|;图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,是经常考查的一个知识点;同时考查了反比例函数图象的对称性4(2013威海)如图,在平面直角坐标系中,AOB=90,OAB=30,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()Am=3nBm=nCm=nDm=n考点:反比例函数综合题1904127专题:压轴题分析:过点B作BEx轴于点E,过点A作AFx轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明BOEOAF,利用对应边成比例可求出m、n的关系解答:解:过点B作BEx轴于点E,过点A作AFx轴于点F,设点B坐标为(a,),点A的坐标为(b,),OAB=30,OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=a,BE=,OF=b,AF=,BOE+OBE=90,AOF+BOE=90,OBE=AOF,又BEO=OFA=90,BOEOAF,=,即=,解得:m=ab,n=,故可得:m=3n故选A点评:本题考查了反比例函数的综合,解答本题的关键是结合解析式设出点A、B的坐标,得出OE、BE、OF、AF的长度表达式,利用相似三角形的性质建立m、n之间的关系式,难度较大5(2013南平)如图,RtABC的顶点B在反比例函数的图象上,AC边在x轴上,已知ACB=90,A=30,BC=4,则图中阴影部分的面积是()A12BCD考点:反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理1904127专题:压轴题分析:先由ACB=90,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解RtABC,得出AC=4,则OA=43设AB与y轴交于点D,由ODBC,根据平行线分线段成比例定理得出=,求得OD=4,最后根据梯形的面积公式即可求出阴影部分的面积解答:解:ACB=90,BC=4,B点纵坐标为4,点B在反比例函数的图象上,当y=4时,x=3,即B点坐标为(3,4),OC=3在RtABC中,ACB=90,A=30,BC=4,AB=2BC=8,AC=BC=4,OA=ACOC=43设AB与y轴交于点DODBC,=,即=,解得OD=4,阴影部分的面积是:(OD+BC)OC=(4+4)3=12故选D点评:本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键6(2013南宁)如图,直线y=与双曲线y=(k0,x0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k0,x0)交于点B,若OA=3BC,则k的值为()A3B6CD考点:反比例函数综合题1904127专题:压轴题;探究型分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作ADx轴,BEx轴,CFBE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x解答:解:将直线y=向上平移4个单位长度后,与y轴交于点C,平移后直线的解析式为y=x+4,分别过点A、B作ADx轴,BEx轴,CFBE于点F,设A(3x,x),OA=3BC,BCOA,CFx轴,CF=OD,点B在直线y=x+4上,B(x,x+4),点A、B在双曲线y=上,3xx=x(x+4),解得x=1,k=311=故选D点评:本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可7(2013内江)如图,反比例函数(x0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A1B2C3D4考点:反比例函数系数k的几何意义1904127专题:压轴题;数形结合分析:本题可从反比例函数图象上的点E、M、D入手,分别找出OCE、OAD、矩形OABC的面积与|k|的关系,列出等式求出k值解答:解:由题意得:E、M、D位于反比例函数图象上,则SOCE=,SOAD=,过点M作MGy轴于点G,作MNx轴于点N,则SONMG=|k|,又M为矩形ABCO对角线的交点,S矩形ABCO=4SONMG=4|k|,由于函数图象在第一象限,k0,则+9=4k,解得:k=3故选C点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注8(2013柳州)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边PAB,使A、B落在x轴上,则POA的面积是()A3B4CD考点:反比例函数系数k的几何意义;等边三角形的性质1904127专题:压轴题分析:如图,根据反比例函数系数k的几何意义求得点P的坐标,则易求PD=4然后通过等边三角形的性质易求线段AD=,所以SPOA=OAPD=4=解答:解:如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,16=a2,且a0,解得,a=4,PD=4PAB是等边三角形,AD=OA=4AD=,SPOA=OAPD=4=故选D点评:本题考查了反比例函数系数k的几何意义,等边三角形的性质等边三角形具有等腰三角形“三合一”的性质9(2013荆州)如图,在平面直角坐标系中,直线y=3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k0)上将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A1B2C3D4考点:反比例函数综合题1904127专题:压轴题分析:作CEy轴于点E,交双曲线于点G作DFx轴于点F,易证OABFDABEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解解答:解:作CEy轴于点E,交双曲线于点G作DFx轴于点F在y=3x+3中,令x=0,解得:y=3,即B的坐标是(0,3)令y=0,解得:x=1,即A的坐标是(1,0)则OB=3,OA=1BAD=90,BAO+DAF=90,又直角ABO中,BAO+OBA=90,DAF=OBA,在OAB和FDA中,OABFDA(AAS),同理,OABFDABEC,AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4)代入y=得:k=4,则函数的解析式是:y=OE=4,则C的纵坐标是4,把y=4代入y=得:x=1即G的坐标是(1,4),CG=2故选B点评:本题考查了正方形的性质,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得C、D的坐标是关键10(2013贵港)如图,点A(a,1)、B(1,b)都在双曲线y=上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()Ay=xBy=x+1Cy=x+2Dy=x+3考点:反比例函数综合题1904127专题:综合题;压轴题分析:先把A点坐标和B点坐标代入反比例函数进行中可确定点A的坐标为(3,1)、B点坐标为(1,3),再作A点关于x轴的对称点C,B点关于y轴的对称点D,根据对称的性质得到C点坐标为(3,1),D点坐标为(1,3),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用待定系数法确定PQ的解析式解答:解:分别把点A(a,1)、B(1,b)代入双曲线y=得a=3,b=3,则点A的坐标为(3,1)、B点坐标为(1,3),作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点坐标为(3,1),D点坐标为(1,3),连结CD分别交x轴、y轴于P点、Q点,此时四边形PABQ的周长最小,设直线CD的解析式为y=kx+b,把C(3,1),D(1,3)分别代入,解得,所以直线CD的解析式为y=x+2故选C点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式;熟练运用两点之间线段最短解决有关几何图形周长最短的问题11(2012随州)如图,直线l与反比例函数y=的图象在第一象限内交于A,B两点,交x轴于点C,若AB:BC=(m1):1(m1),则OAB的面积(用m表示)为()ABCD考点:反比例函数综合题1904127专题:压轴题分析:作ADx轴于点D,BEx轴于点E,根据相似三角形的判定得到CADCBE,则CB:CA=BE:AD,而AB:BC=(m1):1(m1),则有AC:BC=m:1,AD:BE=m:1,若B点坐标为(a,),则A点的纵坐标为,把y=代入得=,易确定A点坐标为(,),然后利用SOAB=SAOD+S梯形ADEBSBOE计算即可解答:解:作ADx轴于点D,BEx轴于点E,如图,BEAD,CADCBE,CB:CA=BE:AD,AB:BC=(m1):1(m1),AC:BC=m:1,AD:BE=m:1,设B点坐标为(a,),则A点的纵坐标为,点A在y=上,把y=代入得=,解得x=,A点坐标为(,),SOAB=SAOD+S梯形ADEBSBOE=S梯形ADEB=(+)(a)=(m+1)(1)=故选B点评:本题考查了反比例函数综合题:反比例函数y=上的点的横纵坐标之积为k;运用比例的性质和相似三角形的判定与性质得到有关线段的比12(2012眉山)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线(x0)经过D点,交BC的延长线于E点,且OBAC=160,有下列四个结论:双曲线的解析式为(x0);E点的坐标是(4,8);sinCOA=;AC+OB=,其中正确的结论有()A1个B2个C3个D4个考点:反比例函数综合题1904127专题:压轴题;探究型分析:过点C作CFx轴于点F,由OBAC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线(x0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sinCOA=可求出COA的正弦值;根据A、C两点的坐标可求出AC的长,由OBAC=160即可求出OB的长解答:解:过点C作CFx轴于点F,OBAC=160,A点的坐标为(10,0),OACF=OBAC=160=80,菱形OABC的边长为10,CF=8,在RtOCF中,OC=10,CF=8,OF=6,C(6,8),点D时线段AC的中点,D点坐标为(,),即(8,4),双曲线(x0)经过D点,4=,即k=32,双曲线的解析式为:y=(x0),故错误;CF=8,直线CB的解析式为y=8,解得,E点坐标为(4,8),故正确;CF=8,OC=10,sinCOA=,故正确;A(10,0),C(6,8),AC=4,OBAC=160,OB=8,AC+OB=4+8=12,故正确故选C点评:本题考查的是反比例函数综合题,涉及到菱形的性质及反比例函数的性质、锐角三角函数的定义等相关知识,难度适中13(2012临沂)如图,若点M是x轴正半轴上任意一点,过点M作PQy轴,分别交函数y=(x0)和y=(x0)的图象于点P和Q,连接OP和OQ则下列结论正确的是()APOQ不可能等于90B=C这两个函数的图象一定关于x轴对称DPOQ的面积是(|k1|+|k2|)考点:反比例函数综合题1904127分析:根据反比例函数的性质,xy=k,以及POQ的面积=MOPQ分别进行判断即可得出答案解答:解:AP点坐标不知道,当PM=MQ时,并且PM=OM,POQ等于90,故此选项错误;B根据图形可得:k10,k20,而PM,QM为线段一定为正值,故=|,故此选项错误;C根据k1,k2的值不确定,得出这两个函数的图象不一定关于x轴对称,故此选项错误;D|k1|=PMMO,|k2|=MQMO,POQ的面积=MOPQ=MO(PM+MQ)=MOPM+MOMQ,POQ的面积是(|k1|+|k2|),故此选项正确故选:D点评:此题主要考查了反比例函数的综合应用,根据反比例函数的性质得出|k1|=PMMO,|k2|=MQMO是解题关键14(2012黄石)如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A(,0)B(1,0)C(,0)D(,0)考点:反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系1904127专题:计算题;压轴题分析:求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|APBP|AB,延长AB交x轴于P,当P在P点时,PAPB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可解答:解:把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,A(,2),B(2,),在ABP中,由三角形的三边关系定理得:|APBP|AB,延长AB交x轴于P,当P在P点时,PAPB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=1,b=,直线AB的解析式是y=x+,当y=0时,x=,即P(,0),故选D点评:本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度15(2012东营)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE有下列四个结论:CEF与DEF的面积相等;AOBFOE;DCECDF;AC=BD其中正确的结论是()ABCD考点:反比例函数综合题1904127专题:压轴题分析:设D(x,),得出F(x,0),根据三角形的面积公式求出DEF的面积,同法求出CEF的面积,即可判断;根据面积相等,推出边EF上的高相等,推出CDEF,即可证出AOBFOE,可判断;算出C、D点坐标,可得到DF=CE,再证出DCE=FDA=45,根据全等三角形的判定判断即可;证出平行四边形BDFE和平行四边形ACEF,可推出BD=AC,判断即可解答:解:设D(x,),则F(x,0),由图象可知x0,DEF的面积是:|x|=2,设C(a,),则E(0,),由图象可知:0,a0,CEF的面积是:|a|=2,CEF的面积=DEF的面积,故正确;CEF和DEF以EF为底,则两三角形EF边上的高相等,故EFCD,FEAB,AOBFOE,故正确;C、D是一次函数y=x+3的图象与反比例函数的图象的交点,x+3=,解得:x=4或1,经检验:x=4或1都是原分式方程的解,D(1,4),C(4,1),DF=4,CE=4,一次函数y=x+3的图象与x轴,y轴交于A,B两点,A(3,0),B(0,3),ABO=BAO=45,DFBO,AOCE,BCE=BAO=45,FDA=OBA=45,DCE=FDA=45,在DCE和CDF中,DCECDF(SAS),故正确;BDEF,DFBE,四边形BDFE是平行四边形,BD=EF,同理EF=AC,AC=BD,故正确;正确的有4个故选C点评:本题考查了平行四边形的性质和判定,三角形的面积,全等三角形的判定,相似三角形的判定,检查同学们综合运用定理进行推理的能力,关键是需要同学们牢固掌握课本知识16(2012朝阳)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(2,3),则k的值为()A1B5C4D1或5考点:反比例函数图象上点的坐标特征;矩形的性质1904127专题:压轴题;探究型分析:根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k2+4k+1=6,再解出k的值即可解答:解:如图:四边形ABCD、HBEO、OECF、GOFD为矩形,又BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,SBEO=SBHO,SOFD=SOGD,SCBD=SADB,SCBDSBEOSOFD=SADBSBHOSOGD,S四边形CEOF=S四边形HAGO=23=6,xy=k2+4k+1=6,解得,k=1或k=5故选D点评:本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,关键是判断出S四边形CEOF=S四边形HAGO17(2012百色)如图,直线l1:x=1,l2:x=2,l3:x=3,l4:x=4,与函数y=(x0)的图象分别交于点A1、A2、A3、A4、;与函数y=的图象分别交于点B1、B2、B3、B4、如果四边形A1A2B2B1的面积记为S1,四边形A2A3B3B2的面积记为S2,四边形A3A4B4B3的面积记为S3,以此类推则S10的值是()ABCD考点:反比例函数综合题1904127专题:压轴题;规律型分析:先根据直线l1:x=1,l2:x=2,l3:x=3,l4:x=4求出S1,S2,S3的面积,找出规律即可得出结论解答:解:直线l1:x=1,l2:x=2,A1(1,2),B1(1,5),A2(2,1),B2(2,),S1=()+()1;(3+)1=;l3:x=3,A3(3,),B3(3,),A3B3=1,S2=()+()1;l4:x=4,A4(4,),B4(4,),S3=()+()1;Sn=()+()1;S10=()+()1=(+)1=故选D点评:本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点及梯形的面积公式,根据题意找出规律是解答此题的关键18(2011眉山)如图,直线y=x+b(b0)与双曲线y=(x0)交于A、B两点,连接OA、OB,AMy轴于M,BNx轴于N;有以下结论:OA=OBAOMBON若AOB=45,则SAOB=k当AB=时,ONBN=1;其中结论正确的个数为()A1B2C3D4考点:反比例函数综合题1904127专题:计算题;压轴题分析:设A(x1,y1),B(x2,y2),联立y=x+b与y=,得x2bx+k=0,则x1x2=k,又x1y1=k,比较可知x2=y1,同理可得x1=y2,即ON=OM,AM=BN,可证结论;作OHAB,垂足为H,根据对称性可证OAMOAHOBHOBN,可证SAOB=k;延长MA,NB交于G点,可证ABG为等腰直角三角形,当AB=时,GA=GB=1,则ONBN=GNBN=GB=1;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论