




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 已知函数() 求函数的最小值和最小正周期;()已知内角的对边分别为,且,若向量与共线,求的值2、已知等差数列满足:,的前n项和为()求及;()令bn=(),求数列的前n项和3、如图,在直三棱柱中,分别为,的中点,四边形是边长为的正方形()求证:平面;()求证:平面;()求二面角的余弦值4、甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从道备选题中一次性抽取道题独立作答,然后由乙回答剩余题,每人答对其中题就停止答题,即闯关成功已知在道备选题中,甲能答对其中的道题,乙答对每道题的概率都是 ()求甲、乙至少有一人闯关成功的概率; ()设甲答对题目的个数为,求的分布列及数学期望5、已知函数.()当时,求函数在,上的最大值、最小值;()令,若在上单调递增,求实数的取值范围. 6、已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:32404()求的标准方程;()请问是否存在直线满足条件:过的焦点;与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由1 解:() 3分 的最小值为,最小正周期为. 5分() , 即 , , 7分 共线, 由正弦定理 , 得 9分 ,由余弦定理,得, 10分解方程组,得 12分2.()设等差数列的公差为d,因为,所以有,解得,所以;=。()由()知,所以bn=,所以=,即数列的前n项和=。3.()证明:连结,与交于点,连结因为,分别为和的中点, 所以 又平面,平面, 所以平面 4分()证明:在直三棱柱中, 平面,又平面, 所以 因为,为中点, 所以又, 所以平面 又平面,所以 因为四边形为正方形,分别为,的中点, 所以, 所以所以 又, 所以平面 8分()解:如图,以的中点为原点,建立空间直角坐标系 则 由()知平面,所以为平面的一个法向量设为平面的一个法向量,由可得令,则所以从而因为二面角为锐角,所以二面角的余弦值为12分4 解:()设甲、乙闯关成功分别为事件,则,2分, 4分所以,甲、乙至少有一人闯关成功的概率是:6分 ()由题意,知的可能取值是、,则的分布列为10分 12分5考察的对称轴为(i)当,即时,应有解得:,所以时成立9分(ii)当,即时,应有即:解得11分综上:实数的取值范围是12分6解:()设抛物线,则有,据此验证个点知(3,)、(4,4)在抛物线上,易求 2分设:,把点(2,0)(,)代入得: 解得方程为 6分()法一:假设存在这样的直线过抛物线焦点,设直线的方程为两交点坐标为,由消去,得8分 10分由,即,得将代入(*)式,得, 解得 12分所以假设成立,即存在直线满足条件,且的方程为:或14分法二:容易验证直线的斜率不存在时,不满足题意;6分当直线斜率存在时,假设存在直线过抛物线焦点,设其方程为,与的交点坐标为由消
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 撞坏手机赔偿协议书
- 旧金手表转让协议书
- 有偿安置协议协议书
- 权利概括转让协议书
- 渝中饭堂承包协议书
- 民间借款转让协议书
- 水泥使用免责协议书
- 果林山地割藤协议书
- 海运运输服务协议书
- 排山施工安全协议书
- 智能海洋牧场装备行业跨境出海战略研究报告
- 麻醉镇静药与阿片类
- 调兵山市招聘社区工作者真题2024
- 2025-2030中国腊味行业发展趋势及发展前景研究报告
- 2025-2030中国手机外壳行业市场发展现状及竞争格局与投资前景研究报告
- 《中型餐饮企业组织结构》课件
- 2025年浙江绍兴诸暨新城投资开发集团有限公司招聘笔试参考题库含答案解析
- 病理学课件-炎症的机制
- 安徽卓越县中联盟2024-2025学年高三下学期5月份检测政治试卷+答案
- 广东省珠海市2024-2025学年下学期期中八年级数学质量监测试卷(含答案)
- 焊接工程师职业技能考核试题及答案
评论
0/150
提交评论