




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
对数与对数运算 一 学习目标 在熟悉指数的基础上充分理解对数的定义 熟练掌握指数式和对数式的互换 能够求出一些特殊的对数式的值 对数的创始人是苏格兰数学家纳皮尔 napier 1550年 1617年 他发明了供天文计算作参考的对数 并于1614年在爱丁堡出版了 奇妙的对数定律说明书 公布了他的发明 恩格斯把对数的发明与解析几何的创始 微积分的建立并称为17世纪数学的三大成就 二 知识铺垫 一 实例 假若我国国民经济生产总值平均每年增长8 则经过多少年国民生产总值是现在的两倍 设 经过x年国民生产总值是现在的两倍 现在的国民生产总值是a 根据题意得 即 如何来计算这里的x 三 知识引入 其中a叫做对数的底数 n叫做真数 1 对数的定义 一般地 如果a a 0 a 1 的b次幂等于n 就是 那么数b叫做以a为底n的对数 四 讲授新课 底数 幂 真数 指数 对数 指数和对数的关系相互转化 由对数的概念可知 1 负数和零没有对数 注意 对数恒等式 一般对数的两个特例 1 常用对数 以10为底的对数 并把简记作 2 自然对数 以无理数e 2 71828 为底的对数 并把简记作 例1 将下列指数式写成对数式 解 五 练习巩固 例2 将下列对数式写成指数式 解 例3 求下列各式的值 例4 计算 练习 p641 4作业 1 p74习题2 2a组1 22 优化探究 p45自测评估p46对点演练13 优化探究 p47知能提升1 2 6 1 对数的定义 2 指数式和对数式的互换 3 求值 六 练习巩固 思考题 2 若log5 log3 log2x 1 x 对数函数 的图象和性质 复习指数函数的图象和性质 2 2 2对数函数及其性质 一 对数函数 一般地 我们把函数 a 0且a 1 叫做对数函数 其中x是自变量 函数的定义域是 0 探索研究 在同一坐标系中画出下列对数函数的图象 对数函数y logax a 0 a 1 4 01时 y 0 4 00 x 1时 y 0 3 过点 1 0 即x 1时 y 0 1 定义域 0 2 值域 r x y o 1 0 x y o 1 0 5 在 0 上是减函数 5 在 0 上是增函数 对数函数的图象和性质 研究下列函数图象的关系 函数图象的应用 的图象如图所示 那么a b c的大小关系是 例1 求下列函数的定义域 a 0且a 1 1 2 3 4 练习 教材p73练习2 例2 比较下列各组数中两个值的大小 练习 教材p73练习3 变式 比较下列各组中两个值的大小 3 已知 m n为不等于1的正数 则下列关系中正确的是 a 1 m n b m n 1 c 1 n m d n m 1 4 画出下列函数的图象 一 同底数比较大小时1 当底数确定时 则可由函数的单调性直接进行判断 2 当底数不确定时 应对底数进行分类讨论 三 若底数 真数都不相同 则常借助1 0等中间量进行比较 二 同真数的比较大小 常借助函数图象进行比较 两个对数比较大小 课堂小结 1 理解对数函数概念 掌握图象和性质 注意a 0 与0 a 1两种情况 2 利用对数函数比较大小 求简单的定义域 作业布置课本p74 a组 第7 8 题 p82a组5 6 2 2 2对数函数及其性质 二 对数函数y logax a 0 a 1 4 01时 y 0 4 00 x 1时 y 0 3 过点 1 0 即x 1时 y 0 1 定义域 0 2 值域 r x y o 1 0 x y o 1 0 5 在 0 上是减函数 5 在 0 上是增函数 对数函数的图象和性质 练习 1 已知函数的定义域是f 函数的定义域是n 确定集合f n的关系 2 求下列函数的定义域 例1 p72例9 溶液酸碱度的测量 溶液酸碱度是通过ph刻画的 ph的计算公式为 其中表示溶液中氢离子的浓度 单位是摩尔 升 根据对数函数性质及上述ph的计算公式 说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系 已知纯洁水中氢离子的浓度为摩尔 升 计算纯洁水的ph 例2求函数的值域 函数的奇偶性 例3 函数的奇偶性为 a 奇函数而非偶函数b 偶函数而非奇函数c 非奇非偶函数d 既奇且偶函数 二函数的单调性 求函数的单调递增区间 2 求函数的单调递减区间 例4 3 求函数y loga ax 1 a 0且a 1 的单调性 作业 p75a组10b组4 p82a组8 b组1 1 已知函数 1 当定义域为r时 求a的取值范围 2 当值域为r时 求a的取值范围 2 求函数的值域 2 2 2对数函数及其性质 3 指数函数的性质 对数函数y logax a 0 a 1 4 01时 y 0 4 00 x 1时 y 0 3 过点 1 0 即x 1时 y 0 1 定义域 0 2 值域 r x y o 1 0 x y o 1 0 5 在 0 上是减函数 5 在 0 上是增函数 对数函数的图象和性质 反函数的概念 设a b分别为函数y f x 的定义域和值域 如果由函数y f x 所解得也是一个函数 即对任意一个 都有唯一的与之对应 那么就称函数是函数y f x 的反函数 记作 习惯上 用x表示自变量 y表示函数 因此的反函数通常改写成 二反函数的概念 注 y f x 的定义域 值域分别是反函数的值域 定义域 例3求下列函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025专业固定期限劳动合同样本
- 违约协议书和违约合同
- 信息科学素养试题及答案
- 请假条考试题及答案
- 2025年高硅氧玻璃纤维纱项目规划申请报告
- 中医保胎治疗理论与实践
- 家长儿童课堂课件
- 托事条试题及答案
- 2025年《工业机器人应用系统集成》课程标准
- 2025年《Windows网络管理》课程标准
- 物理竞赛所有公式
- 6随机信号-4(非平稳随机信号的分析)
- 全过程造价咨询服务 投标方案(技术方案)
- 钕铁硼材料倒角公差标准
- 2021新译林版新教材高中英语必修三全册单词默写(汉译英)
- 业务往来明细表
- 成品出货检验报告模板
- 网络营销7微博营销
- 苏科版物理八年级上册学期期末试卷(附答案)
- 插花学习通超星课后章节答案期末考试题库2023年
- 测绘技术和质量保证体系
评论
0/150
提交评论