资源目录
压缩包内文档预览:(预览前20页/共59页)
编号:484472
类型:共享资源
大小:2.62MB
格式:ZIP
上传时间:2015-11-05
上传人:QQ28****1120
认证信息
个人认证
孙**(实名认证)
辽宁
IP属地:辽宁
30
积分
- 关 键 词:
-
机械毕业设计全套
- 资源描述:
-
CL02-059@轻型商用车制动系统设计,机械毕业设计全套
- 内容简介:
-
1 第 1 章 绪 论 1.1 制动系统设计的意义 汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统 , 它是制约汽 车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关键 装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大 , 人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全 , 必须为汽车配备十分可靠的制动系统 。 通过查阅相关的资料,运用专业基础理论和专业知识,确定 汽车 制动系统的设计方案,进行部 件的设计计算和结构设计。使其达到以下要求:具有足够的制动效能以保证汽车的安全性;本系统采用 型双回路的制动管路以保证制动的可靠性;采用真空助力器使其操纵轻便;同时在材料的选择上尽量采用对人体无害的材料。 1.2 制动系统研究现状 车辆在行驶过程中要频繁进行制动操作 , 由于制动性能的好坏直接关系到交通和人身安全 , 因此制动性能是车辆非常重要的性能之一 , 改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时 , 由于车辆受到与行驶方向相反的外力 , 所以才导致汽车的速度逐渐减小至 零 , 对这一过程中车 辆受力情况的分析有助于制动系统的分析和设计 , 因此制动过程受力情况分析是车辆试验和设计的基础 , 由于这一过程较为复杂 , 因此一般在实际中只能建立简化模型分析 , 通常人们主要从三个方面来对制动过程进行分析和评价 : ( 1) 制动效能 :即制动距离与制动减速度; ( 2) 制动效能的恒定性 : 即抗热衰退性; ( 3) 制动时汽车的方向稳定性; 目前 , 对于整车制动系统的研究主要通过路试或台架进行 , 由于在汽车道路试验中车轮扭矩不易测量 , 因此 , 多数有关传动系 !制动系的试验均通过间接测量来进行汽车在道路上行驶 , 其车轮与地面的作用力是汽车运动变 化的根据 , 在汽车道路试验中 ,如果能够方便地测量出车轮上扭矩的变化 , 则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。 nts 2 1.3 制动系统 设计 内容 ( 1) 研究、确定制动控制采用气压方式还是液压(真空助力、真空增压或油气 混合)方式 ( 2)研究、确定制动系统的构成 1) 设计制动系统示意图。 2) 驻车制动采用的形式。 3) 是否需要有辅助制动 。 ( 3)汽车必需制动力及其前后分配的确定 前提条件一经确定,与前项的系统的研究、确定的同时,研究汽车必需的制动力 并把它们适当地分配到前后轴上,确定每个车轮 制动器必需的制动力。 ( 4) 确定制动器制动力、摩擦片寿命及构造、参数 制动器必需制动力求出后,考虑摩擦片寿命和由轮胎尺寸等所限制的空间,选定制动器的型式、构造和参数,绘制布置图,进行制动力制动力矩计算、摩擦磨损计算。 ( 5) 制动器零件设计 零件设计、材料、强度、耐久性及装配性等的研究确定,进行工作图设计。 ( 6) 制动操纵系统设计 制动系操纵部件(阀类、加力器、制动气室等)的研究、选定或设计,操纵机构设计; ( 7) 管路设计 管路布置、设计。 1.4 制动系统设计要求 制定出制动系统的结构 方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱 动系统的参数计算。利用计算机辅助设计绘制装配图,布置图和零件图,并对制动器进行三维建模 。 nts 3 第 2 章 制动系统总体方案 设计 汽车 制动系统总体方案设计,主要涉及制动器的结构型式选择 ,制动驱动机构的结构型式选择,制动 管路布置结构型式的选择等三个方面。本章将就这三个方面 的问题进行分析论证。 2.1 制动器的结构型式 的 选择 车轮制动器主要用于行车制动系统,有时也兼作驻车制动之用。制动器主要有摩擦式、液力式、和电磁式等三种形式。电磁 式制动器虽有作用滞后性好、易于连接而且接头可靠等优点,但因成本太高,只在一部分总质量较大的商用车上用作车轮制动器或缓速器;液力式制动器一般只用缓速器。目前广泛使用的仍为摩擦式制动器 2。 摩擦式制动器按摩擦副结构不同,可以分为鼓式、盘式和带式三种。带式只用于中央制动器;鼓式和盘式应用最为广泛。鼓式制动器广泛应用于商用车,同时鼓式制动器结构简单、制造成本低 。 鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。 内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧 固于前梁或后桥壳的凸缘上 (对车轮制动器 )或变速器壳或与其相固定的支架上(对中央制动器 ); 其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。 现 外束型鼓式制动器主要用于中央制动器的设计 1。 相对于鼓式制 动器盘式制动器具有以下优点: ( 1) 热稳定性好; ( 2) 水稳定性好; ( 3) 制动稳定性好; ( 4) 制动力矩与汽车前进和后退等行驶状态无关 ; ( 5) 在输出同样大小的 制动力矩的条件下,盘式 制动器的结构尺寸和质量比鼓式制动器的要小; nts 4 ( 6) 盘式制动器的摩擦衬块比鼓式制 动器的摩擦衬片在磨损后更易更换,结构也比较简单,维修、保养容易; ( 7) 制动盘与摩擦衬块间的间隙小,一 次缩短了油缸活塞的操作时间,并使驱动机构的力传动比有增大的可能; ( 8) 制动盘的热膨胀量不会像制动鼓热膨胀那 样引起制动踏板行程损失,这也使得间隙自动 调整机构的设计可以简化; ( 9) 易于构成多回路制动驱动系统,使系统有较好的可靠性与安全性,以保证汽车在任何车速下各车轮都能均匀一致地平稳制动 ; ( 10) 能方便地实现制动器磨损报警,能及时地更换摩擦衬片。 作为一款轻型载货商用车, 出于制造 维修成本 以及制动效能等 方面考虑,采用 前盘后鼓式制动器 。 鼓式制动器可按其制动蹄的受力情况分类 (见图 2.1),它们的制动效能、制动鼓的受力平衡状况以及车轮旋转方向对制动效能的影响均不同 2。 ( a) ( b) ( c) ( d) ( e) ( f) ( a)领从蹄式(凸轮张开);( b)领从蹄式(制动轮缸张开);( c)双领蹄式(非双向,平衡式); ( d)双向双领蹄式;( e)单向增力式;( f)双向增力式 图 2.1 鼓式制动器简图 制动蹄按其张开时的转动方向和制动鼓的旋转方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则 称为从蹄。 nts 5 领从蹄式制动器的效能和效能稳定性,在各式制动器中居中游;前进、倒退行驶的制动效果不变;结构简单,成本低;便于附装驻车制动驱动机构;易于调整蹄片之间的间隙。因此得到广泛的应用,特别是用于乘用车和总质量较小的商用车的后轮制动器 2。 轻型 商用车总质量较小, 因此 采用 结构简单,成本低的 领从蹄式鼓式制动器。 按摩擦副中的固定摩擦元件的结构来分,盘式制动器分为钳盘制动器和全盘制动器两大类。 全盘制动器的固定摩擦元件和旋转元件均为圆盘形,制动时各盘摩擦便面全部接触。这种制动器的散热性差,为此,多采用油冷式, 结构复杂。 前盘式制动器按制动钳的结构形式可分为固定钳盘和浮动钳盘两种。其中浮动前盘式制动器只在制动盘的一侧装油缸,其结构简单,造价低廉,易于布置,结构尺寸紧凑,可将制动器进一步移近轮毂,同一组制动块客兼用于行车制动和驻车制动。因此作为轻型商用车前制动器采用浮动前盘式制动器。 2.2 制动驱动机构的结构型式的方案比较选择 根据制动力源的不同 , 制动驱动机构可分为简单制动、动力制动以及伺服制动三大类型。而力的传递方式又有机械式、液压式、气压式和气压 -液压式的区别,如表 2.1所示。 表 2.1 制动驱动机构的结构型 式 制动力源 力的传递方式 用途 型式 制动力源 工作介质 型式 工作介质 简单制动系 (人力制动系) 司机体力 机械式 杆系或钢丝 绳 仅限于驻车制动 液压式 制动液 部分微型汽车的行 车制动 动力制动系 气压动力 制动系 发动机动力 空气 气压式 空气 中、重型汽车的行车制动 气压 -液压式 空气、制动 液 液压动力 制动系 制动液 液压式 制动液 伺服制动系 真空伺服 制动系 司机体力与发动机动力 空气 液压式 制动液 轿车,微、轻、中型汽车的行车制动 气压 制动 系 空气 液压伺服 制动系 制动液 简单制动单靠驾驶员施加的踏板力或手柄力作为制动力源,故亦称人力制动。其中,又分为机械式和液压式两种。机械式完全靠杆系传力,由于其机械效率低,传动nts 6 比小,润滑点多,且难以保证前、后轴制动力的正确比例和左、右轮制动力的均衡,所以在汽车的行车制动装置中已被淘汰。但因其结构简单,成本低,工作可靠 (故障少 ),还广泛地应用于中、小型汽车的驻车制动装置中 2。 液压式简单制动 (通常简称为液压制动 )用于行车制动装置。液压制动的优点是:作用滞后时间较短 (0.1 0.3s);工作压力高 (可达 10 20MPa),因而轮缸尺寸小,可以安装在制动器内部,直接作为制动蹄的张开机构 (或制动块的压紧机构 ),而不需要制动臂等传动件,使之结构简单,质量小;机械效率较高 (液压系统有自润滑作用 )。液压制动的主要缺点是过度受热后,部分制动液汽化,在管路中形成气泡,严重影响液压传输,使制动系效能降低,甚至完全失效。液压制动曾广泛应用在轿车、轻型货车及一部分中型货车上 。 动力制动即利用发动机的动力转化而成,并表现为气压或液压形式的势能作为汽车制动的全部力源。驾驶员施加于踏板或手柄上的力,仅用 于回路中控制元件的操纵。因此,简单制动中的踏板力和踏板行程之间的反比例关系,在动力制动中便不复存在,从而可使踏板力较小,同时又有适当的踏板行程。 气压制动是应用最多的动力制动之一。其主要优点为操纵轻便、工作可靠、不易出故障、维修保养方便;此外,其气源除供制动用外,还可以供其它装置使用。其主要缺点是必须有空气压缩机、贮气筒、制动阀等装置,使结构复杂、笨重、成本高;管路中压力的建立和撤除都较慢,即作用滞后时间较长 (0.3s 0.9s),因而增加了空驶距离和停车距离,为此在制动阀到制动气室和贮气筒的距离过远的情况 下,有必要加设气动的第二级元件 继动阀 (亦称加速阀 )以及快放阀;管路工作压力低,一般为0.5MPa 0.7MPa,因而制动气室的直径必须设计得大些,且只能置于制动器外部,再通过杆件和凸轮或楔块驱动制动蹄,这就增加了簧下质量;制动气室排气有很大噪声。气压制动在总质量 8t 以上的货车和客车上得到广泛应用。由于主、挂车的摘和挂都很方便,所以汽车列车也多用气压制动 。 用气压系统作为普通的液压制动系统主缸的驱动力源而构成的气顶液制动,也是动力制动。它兼有液压制动和气压制动的主要优点,因气压系统管路短,作用滞后时间也较短。但因结构复杂、质量大、成本高,所以主要用在重型汽车上。 全液压动力制动,用发动机驱动液压泵产生的液压作为制动力源,有闭式 (常压式 )与开式 (常流式 )两种。 开式 (常流式 )系统在不制动时,制动液在无负荷情况下由液压泵经制动阀到贮液罐不断循环流动;而在制动时,则借阀的节流而产生所需的液压并传人轮缸。 闭式回路因平时总保持着高液压,对密封的要求较高,但对制动操纵的反应比开nts 7 式的快。在液压泵出故障时,开式的即不起制动作用,而闭式的还有可能利用蓄能器的压力继续进行若干次制动。 全液压动力制动除了有一般液压制动系 的优点以外,还有制动能力强、易于采用制动力调节装置和防滑移装置,即使产生汽化现象也没有什么影响等好处。但结构相当复杂,精密件多,对系统的密封性要求也较高,目前应用并不广泛。 各种形式的动力制动在动力系统失效时,制动作用即全部丧失。 伺服制动的制动能源是人力和发动机并用。正常情况下其输出工作压力主要由动力伺服系统产生,在伺服系统失效时,还可以全靠人力驱动液压系统以产生一定程度的制动力,因而从中级以上的轿车到重型货车,都广泛采用伺服制动。 按伺服力源不同,伺服制动有真空伺服制动、空气伺服制动和液压伺服制动三类。 真空伺服制动与空气伺服制动的工作原理基本一致,但伺服动力源的相对压力不同。真空伺服制动的伺服用真空度 (负压 )一般可达 0.05MPa 0.07MPa;空气伺服制动的伺服气压一般能达到 0.6MPa 0.7MPa,故在输出力相同的条件下, 空气伺服气室直径比真空伺服气室的小得多。但是,空气伺服系统其它组成部分却较真空伺服系统复杂得多。真空伺服制动多用于总质量在 1.1t 1.35t 以上的轿车和装载质量在 6t 以下的轻、中型货车,空气伺服制动则广泛用于装载质量为 6t 12t 的中、重型货车,以及少数几种高级轿车上。 CA1041 总质量 4.06t,本次设计采用 真空助力式 伺服制动系统。 2.3 制动管路的多回路系统 为了提高制动驱动机构的工作可靠性,保证行车安全,制动驱动机构至少应有两套独立的系统,即应是双管路的。应将汽车的全部行车制动器的液压或气压管路分成两个或更多个相互独立的回路,以便当一个回路失效后,其他完好的回路仍能可靠地工作。 根据 GB 72582004 规定制动系统部分管路失效的情况下,应能有一定的制动力。 ( a) ( b) ( c) ( d) ( e) 1双腔制动主缸; 2双回路系统的一个分路; 3双回路的另一分路 图 2.2 双轴汽车液压双回路系统的 5 种分路方案 nts 8 图 2.2 为双轴汽车的液压式制动驱动机构的双回路系统的五种分路方案图。选择分路方案时主要是考虑其制动效能的损失程度、制动力的不对称情况和回路系统的复杂程度等。 图 2.2(a)为前、后轮制动管路各成独立的回路系统,即一轴对一轴的分路型式,简称 型。其特点是管路布置最为简单,可与传统的单轮缸 (或单制动气室 )鼓式制动器相配合,成本较低。在各类汽车上都有 采用,但在货车上用得最广泛。这一分路方案若后轮制动管路失效,则一旦前轮抱死就会失去转弯制动能力。对于前驱动的轿车,当前轮管路失效而仅由后轮制动时,制动效能将显著降低并小于正常情况下的一半,另外由于后桥负荷小于前轴,则过大的踏板力会使后轮抱死导致汽车甩尾。 图 2.2(b)为前、后轮制动管路呈对角连接的两个独立的回路系统,即前轴的一侧车轮制动器与后桥的对侧车轮制动器同属一个回路,称交叉型,简称 X 型。其特点是结构也很简单,一回路失效时仍能保持 50%的制动效能,并且制动力的分配系数和同步附着系数没有变化,保证了制动 时与整车负荷的适应性。此时前、后各有一侧车轮有制动作用使制动力不对称,导致前轮将朝制动起作用车轮的一侧绕主销转动,使汽车失去方向稳定性。所以具有这种分路方案的汽车,其主销偏移距应取负值 (至 20mm),这样,不平衡的制动力使车轮反向转动,改善了汽车的方向稳定性,所以多用于中、小型轿车。 图 2.2(c)的每侧前制动器的半数轮缸与全部后制动器轮缸构成一个独立的回路;而两前制动器的另半数轮缸构成另一回路。可看成是一轴半对半个轴的分路型式,简称 HI 型。 图 2.2(e)的两个独立的回路均由每个前、后制动器的半数缸所组成 ,即前、后半个轴对前、后半个轴的分路型式。简称 HH 型。这种型式的双回路系统的制动效能最好。 HI, LL, HH 型的结构均较复杂。 LL 型与 HH 型在任一回路失效时,前、后制动力比值均与正常情况下相同,剩余总制动力 LL 型可达正常值的 80%而 HH 型约为 50%左右。 HI 型单用回路 3(见图 2.2(c),即一轴半 )时剩余制动力较大,但此时与 LL 型一样,在紧急制动时后轮极易先抱死。 本次设计采用图 2.2(a)所示 前、后轮制动管路各成独立的 的 回路系统 符合了 GB 72582004 对制动管路布置的要求 。 2.4 本章小结 本章 主要 对 轻型商用车 制动系统的总体设计进行了比较和论证选择, 通过对 制动器的结构型式、制动驱动机构的结构型式,制动管路布置的结构型式三个方面对制动nts 9 系统进行了整体上的选择。 nts 10 第 3 章 制动器设计计算 车轮制动器是行车制动系的重要部件。按 GB7258-2004 的规定,行车制动必须作用在车辆的所有的车轮上。 3.1 轻型商用车 的主要技术参数 在制动器设计中需预先给定的整车参数 如表 3.1 所示 表 3.1 CA1041 货车 整车参数 已知参数 车型 CA1041 轴距 L( mm) 2850 整车整备质量( Kg) 2180 满载质量( Kg) 4060 满 载时质心距前轴中心线的距离( mm) 1199 满载时质心距后 轴中心线的距离( mm) 1781 空载时质心高度( mm) 730 满载时质心高度( mm) 950 3.2 制动系统的主要参数及其选择 3.2.1 同步附着系数 对于前后制动器制动力为固定比值的汽车,只有在附着系数 等于同步附着系数0的路面上,前、后车轮制动器才会同时抱死,当 汽车在不同 值的路面上制动时,可能有以下三种情况 4。 1、 当0时 线在 I 曲线下方,制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; 2、 当0时 线位于 I 曲线上方,制动时总是后轮先抱死,这 时容易发生后轴侧滑而使汽车失去方向稳定性; 3、 当0时 nts 11 制动时汽车前、后轮同时抱死,这时也是一种稳定工况,但也丧失了转向能力。为了防止汽车制动时前轮失去转向能力和后轮产生侧滑,希望在制动过程中,在即将出现车轮抱死但尚无任何车轮抱死时的制动减速度为该车可能产生的最高减速度。分析表明,汽车在同步附着系数0的路面上制动(前、后车轮同时抱死)时,其制动减速度为 gqgddtu 0,即0q, q 为制动强度。 在其他附着系数 的路面上制动时,达到前轮或后轮即将抱死的制动强度 q 。 这 表明 只有在0的路面上,地面的附着条件才可以得到充分利用。附着条件的利用情况可以用附着系数利用率 (或称附着力利用率)来表示, 可定义为 qGFB ( 3.1) 式中: BF 汽车总的地面制动力; G 汽车所受重力; q 汽车制动强度。 当0时,0q, 1 ,利用率最高。 现代的道路条件 大为改善,汽车行驶速度也大为提高,因而汽车因制动时后轮先抱死的后果十分严重。由于车速高,它不仅会引起侧滑甚至甩尾会发生掉头而丧失操纵稳定性,因此后轮先抱死的情况是最不希望发生的,所以各类轿车和一般载货汽车的0值均有增大趋势。国外有关文献推荐满载时的同步附着系数:轿车取 6.00 ;货车取 5.00 为宜。 我国 GB126761999 附录 A 制动力在车轴(桥)之间的分配及挂车之间制动协调性要求 中 3.2.13A规定了除 1M 、 1N 外其他类型 汽车 制动强度 的要求 。 对于制动强度在 0.150.3 之间,若各轴的附着利用曲线位于公式 08.0 q 确定的与理想附着系数利用直线平行的两条直线(如图 3.1)之间,则认为满足 2.13A条件要求;对于制动强度 3.0q ,若后轴附着利用曲线能满足公式 )38.0(74.03.0 q ,则认为满足 2.13A的要求 4。 nts 12 参考与同类车型的0值,取 78.00 。 图 3.1 除 1M 、 1N 外的其他类别车辆的制动强度与附着系数要求 3.2.2 制动强 度和附着系数利用率 根据选定的同步附着系数0, 已知 : LhL g02 ( 3.2) 式中: L 汽车轴距, 2850L mm; 制动力分配系数; 1L 满载时汽车质心距前轴中心的距离 11991 L ; 1L 满载时汽车质心距后轴中心的距离 17812 L ; gh满载时 汽车质心高度 950gh。 求得: 635.0 进而求得 qhLLGGqFF gBB )( 021 ( 3.3) qhLLGGqFF gBB )()1()1( 012 ( 3.4) 式中: q 制动强度; BF 汽车总的地面制动力; nts 13 1BF 前轴车轮的地面制动力; 2BF 后轴车轮的地面制动力 。 当0时,21 FFB ,故 GFB , q ; 1 。 此时 78.0q , 596.0)38.0(74.03.00 q符 合 GB126761999 的要求。 当0时,可能得到的最大总制动力取决于前轮刚刚首先抱死的条件,即11 FFB 。 此时求得: 95.08157.184.4 2 5 7 695.0)786.0(069.1069.18.94060)( 02 2 gB hLGLF 95.08157.1069.195.0)786.0(069.1069.1)( 02 2 ghLLq 95.08157.1069.195.0)786.0(069.1069.1)( 02 2 ghLL 表 3.2 取不同值时对比 GB 12676-1999 的结果 当0时,可能得到的最大的制动力取决于后轮刚刚首先抱死的条件,即22 FFB 。此时求得: 95.05 2 7 7.24.7 0 8 6 295.0)786.0(781.1781.18.94 0 6 0)( 01 1 gB hLGLF 95.05 2 7 7.2781.195.0)786.0(781.1781.1)( 01 1 ghLLq 95.08 1 5 7.1781.195.0)786.0(781.1781.1)( 01 1 ghLL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 BF 2473.4 5238.0 8344.6 11862.3 15878.6 22716.3 37000.8 q 0.062 0.1315 0.2095 0.2978 0.3987 0.5149 0.5574 0.621 0.6575 0.6983 0.7746 0.7973 0.8582 0.9290 GB126761999 符合 国家标准 符合 国家标准 符合 国家标准 符合 国家标准 符合 国家标准 符合 国家标准 符合 国家标准 nts 14 表 3.3 取不同值时对比 GB 12676-1999 的结果 3.2.3 制动器最大的制动力矩 为保证汽车有良好的制动效能和稳定性,应合理地确定前、后轮制动器的制动力矩。 最大制动力是在汽车附着质量被完全利用的条件下获得的,这时制动力与地面作用于车轮的法向力 21 ZZ、 成正比。所以,双轴汽车前、后车轮附着力同时被充分利用或前、后轮同时抱死的制动 力之比为 : ggffhLhLZZFF01022121 ( 3.5) 式中: 21 LL, 汽车质心离前、后轴的距离; 0同步附着系数; gh汽车质心高度。 制动器所能产生的制动力矩,受车轮的计算力矩所制约,即 eff rFT 11 eff rFT 22( 3.6) 式中:1fF前轴制动器的制动力, 11 ZFf ; 2fF后轴制动器的制动力, 22 ZFf ; 1Z 作用于前轴车轮上的地 面法向反力; 2Z 作用于后轴车轮上的地面法向反力; er车轮的有效半径。 0.8 BF 32069.8 q 0.8060 1.0075 GB126761999 符合国家标准 nts 15 对于选取较大0值的各类汽车,应从保证汽车制动时的稳定性出发,来确定各轴的最大制动力矩。当0时,相应的极限制动强度 q ,故所需的后轴和前轴制动力矩为 egf rqhLLGT )( 1m a x2 ( 3.7) m a x2m a x1 1 ff TT ( 3.8) 式中: 该车所能遇到的最大附着系数; q 制动强度; er车轮有效半径。 367137.07.0)95.08060.0781.1(850.2 8.94060)( 1m a x2 egf rqhLLGT Nm 5.638625.3274635.01 635.01 m a x2m a x1 ff TT Nm 单个车轮 制动器应有的最大制动力矩为max1fT、max2fT的一半,为 3193 Nm 和1835.5Nm。 3.3 制动器因数 和制动蹄因数 制动器因数又称为制动器效能因数。其实质是制动器在单位输入压力或力的作用下所能输出的力或力矩,用于评比不同结构型式的制动器的效能。制动器因数可定义为在制动鼓或制动盘的作用半径上所产生的摩擦力与输入力之比,即 PRTBF f ( 3.9) 式中: BF 制动器效能因数 fT制动器的摩擦力矩; R 制动鼓或制动盘的作用半径; P 输入力,一般取加于两制动蹄的张开力 (或加 于两制动块的压紧力 )的平均值为输入力。 对于鼓式制动器,设作用于两蹄的张开力分别为 1P 、 2P ,制动鼓内圆柱面半径即 制动鼓工作半径为 R ,两蹄给予制动鼓的摩擦力矩分别为1TfT和2TfT,则两蹄的效能因 nts 16 数即制动蹄因数分别为: RPTBF TfT 1 11 ( 3.10) RPTBF TfT 2 22 ( 3.11) 整个鼓式制动器的制动因数则为 RPPTTRPPTTPRTBF TfTfTfTff)()(2)(5.0 21 2121 21 ( 3.12) 当 PPP 21 时,则 2121 TTTfTf BFBFPRTTBF ( 3.13) 蹄与鼓间作用力的分布,其合力的大小、方向及作用点,需要较精确地分析、计算才能确定。今假设在张力 P 的作用下制动蹄摩擦衬片与鼓之间作用力的合力 N 如图3.2 所示作用于衬片的 B 点上。这一法向力引起作用于制动蹄衬片上的摩擦力为 fNf ,为摩擦系数。 a, b, c, h, R 及 为结构尺寸,如图 3.2 所示。 图 3.2 鼓式制动器的简化受力图 对领蹄取绕支点 A 的力矩平衡方程,即 0 Nbn FCPh ( 3.14) 由上式得领蹄的制动蹄因数为 bcffbhPNfBFT11( 3.15) nts 17 当制动鼓逆转时,上述制动蹄便又成为从蹄,这时摩擦力fN的方向与图 3.2 所 示相反,用上述分析方法,同样可得到从蹄绕支点 A 的力矩平衡方程,即 0 Nbn FCPh ( 3.16) bcffbhPNfBFT12( 3.17) 由式 (3-15)可知:当 f 趋近于占 cb/ 时,对于某一有限张开力 P ,制动鼓摩擦力 趋于无穷大。这时制动器将自锁。自锁效应只是制动蹄衬片摩擦系数和制动器几何尺 寸的函数。 通过上述对领从蹄式制动器制动蹄因数的分析与计算可以看 出,领蹄由于摩擦力 对蹄支点形成的力矩与张开力对蹄支点的力矩同向而使其制动蹄因数值大,而从蹄则 由于这两种力矩反向而使其制动蹄因数值小。两者在 f =0.3 0.35 范围内,当张开 力21 PP 时,相差达 3 倍之多。图 3.3 给出了领蹄与从蹄的制动蹄因数及其导数对摩擦系数的关系曲线。由该图可见,当 f 增大到一定值时,领蹄的 1TBF 和 dfdBF T /1 均 趋于无限大。它意味着此时只要施加一极小张开力 1P ,制动力矩将迅速增至极大的数值,此后即使放开制动踏板,领蹄也不能回位而是一直保持制动状态,发生 “自锁 ”现象。这时只能通过倒转制动鼓消除制动。领蹄的 1TBF 和 dfdBF T /1 随 f 的增大而急剧增大的现象称为自行增势作用。反之,从蹄的 2TBF 和 dfdBF T /2 随 f 的增大而减小的现象称为自行减势作用。 在制动过程中,衬片的温度、相对滑动速度、压力以及湿度等因素的变化 会导致摩擦系数的改变。而摩擦系数的改变则会导致制动效能即制动器因数的改变。制动器因数 BF 对摩擦系数 的敏感性可由 dfdBF T / 来衡量,因而 dfdBF T / 称为制动器的敏感度,它是制动器效能稳定性的主要决定因素,而 f 除决定于摩擦副材料外,又与摩擦副表面的温度和水湿程度有关,制动时摩擦生热,因而温度是经常起作用的因素,热稳定性更为重要。 热衰退的台架试验表明,多次重复紧急制动可导致制动器因数值减小 50%,而下 长坡时的连续和缓制动也会使该值降至正常值的 30%。 nts 18 1 领蹄; 2 从蹄 图 3.3 制动蹄因数 BF 及其导数 dfdBF T / 与摩擦系数的关系 由图 3.3 也可以看出,领蹄的制动蹄因数虽大于从蹄,但其效能稳定性却比从 蹄 差。就整个鼓式制动器而言,也在不同程度上存在以 BF 为表征的效能本身与其稳定 性之间的矛盾。由于盘式制动器的制动器因数对摩擦系数的导数 ( dfdBF T / )为常数, 因此其效能稳定性最好。 3.4 制动器的结构参数 与摩擦系数 3.4.1 鼓式 制动器的结构参数 1、 制动鼓直径 D 当输入力 P 一定时,制动鼓的直径越大,则制动力矩越大,且使制动器的散热性能 越好。但直径 D 的尺寸受到轮辋内径的限制,而且 D 的增大也使制动鼓的质量增加,使汽车的非悬挂质量增加,不利于汽车的行驶的平顺性。制动鼓与轮辋之间应有一定的间隙,以利于散热通风,也可避免由于轮辋过热而损坏轮胎。由此间隙要求及轮辋的尺寸即可求得制动鼓直径 D 的尺寸。 由于 CA1041 采用 16 in 的轮辋所以取76.0/ rDD , 制 动 鼓 直 径 D 与 轮 辋 直 径 Dr 之 比 的 一 般 范 围 为 : 货 车 83.064.0/ rDD 。 54.21616 inD r =40.64mm 31 076.064.4076.0 rDD mm 2、 制动蹄摩擦片 宽度 b 、制动蹄摩擦片的包角 和单个制动器摩擦面积A由 1999309/ TQC 制动鼓工作直径及制动蹄片宽度尺寸系列的规定,选取制nts 19 动蹄摩擦片宽度 75b mm;摩擦片厚度 7l mm。 摩擦衬片的包角 通常在 12090 范围内选取,试验表明,摩擦衬片包角 12090 时磨损最小,制动鼓的温度也最低,而制动效能则最高。再减小 虽有利于散热,但由于单位压力过高将加速磨损。包角 也不宜大于 120 ,因为过大不仅不利于散热,而且易使制动作用不平顺,甚至可能发生自锁。 综上所述选取 领蹄 1101 ,从蹄 1001 单个制动器摩擦面积A: 3 6 0/)(21 DbA( 3.18) 式中:A单个制动器摩擦面积, mm2 D 制动鼓内径, mm; b 制动蹄摩擦片宽度 , mm; 21 、 分别为两蹄的摩擦衬片包角,( )。 86.4 2 53 6 0/2 1 0753 1 014.33 6 0/)( 21 DbA cm2 表 3.4 制动器衬片摩擦 面积 汽车类别 汽车总质量 /am t 单个制动器摩擦面积 /A cm2 轿车 5.19.05.25.1 200100 300200 客车与货车 5.10.1 5.25.1 5.35.2 0.75.3 0.120.7 0.170.12 200120 250150 (多为 200150 ) 400250 650300 1000550 1500600 (多为 1200600 ) 由 表 3.4 数据可知设计符合要求。 3、 摩擦衬片起始角0摩擦衬片起始角0如图 3.4 所示。通常是将摩擦衬片布置在制动蹄外缘的中央,并令2900 。 nts 20 领蹄包角 352110902900 从蹄包角 402100902900 图 3.4 鼓式制动器的主要几何参数 4、 张开力 P 的作用线至制 动器中心的距离 a 在满足制动轮缸布置在制动鼓内的条件下,应使距离 a (见图 3.4) 尽可能地大,以提高其制动效能。初步设计时可暂取 Ra 8.0 ,根据设计时的实际情况取 118a mm 5、 制动蹄支销中心的坐标位置 k 与 c 如图 3.4 所示,制动蹄支销中心的坐标尺寸 k 尽可能地小 设计时常取 30k mm,以使 c 尽可能地大 ,初步设计可暂取 , Rc 8.0 根据设计的实际情况取 120c mm。 3.4.2 摩擦片摩擦系数 选择摩擦片时,不仅希望起摩擦系数要高些,而且还要求其热稳定性好,受温度和压力的影响小。不宜单纯的追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的 敏感性的要求。 后者对蹄式制动器是非常重要的各种制动器用摩擦材料的摩擦系数的稳定值约为 5.03.0 ,少数可达 0.7。 一般说来,摩擦系数越高的材料,其耐磨性能越差。所以在制动器设计 时,并非一定要追求最高摩擦系数的材料。当前国产的制动摩擦片材料在温度低于 250 时,保持摩擦系数 f =0.350.4 已不成问题。因此,在假设的理想条件下计算制动器的制动力矩,取f =0.3 可使计算结果接近实际值。另外 ,在选择摩擦材料时,应尽量采用减少污染和对人体无害的材料。 3.4.2 盘式 制动器的结构参数 1、制动盘直径 D 制动盘直径 D 希望尽量大些,这时制动盘的有效半径得以增大,就可以降低制动钳的夹紧力,降低摩擦衬块的单位压力和工作温度。但制动盘的直径 D 受轮辋直径的nts 21 限制,通常,制动盘的直径 D 选择轮辋直径的 70 79,而总质量大于 2t 的汽车应取上限 32164.4079.0 D mm 取制动盘直径 355D mm 2、制动盘厚度 h 制动盘厚度 h 直接影响着制动盘质量和工作时的温升 。为使质量不致太大,制动盘厚度应取得适当小些;为了降低制动工作时的温升,制动盘厚度又不宜过小。实心盘的厚度选择 10mm 20mm,选择制动盘厚度为 h=15mm。 3、摩擦衬块工作面积 A 推荐根据制动器摩擦衬块单位面积占有的汽车质量在 22 /5.3/6.1 cmkgcmkg 范围内选取。 根据推荐值取 2.2,依汽车 质量 2180kg,得到单片摩擦衬块的工作面积取值为23480 cm 。 4、摩擦衬块内半径 1R 与外半径 2R 推荐摩擦衬块的外半径 2R 与内半径 1R 的比值不大于 1.5。若此比值偏大,工作时摩擦衬块外缘与内缘的圆周速度相差较大,则其磨损就会不均匀,接触面积将减小,最终会导致制动力矩变化大。 取摩擦衬块外半径 mmR 1702 ,内半径 mmR 1201 7.021 RRm则 25.024.01 2 mm摩擦衬块 半径选取符合要求。 3.5 制动器的设计计算 3.5.1 制动蹄摩擦面的压力分布规律 从前面的分析可知,制动器摩擦材料的摩擦系数及所产生的摩擦力对制动器因数有很大影响。掌握制动蹄摩擦面上的压力分布规律,有助于正确分析制动器因数。在理论上对制动蹄摩擦面的压力分布规律作研究时,通常作如下一些假定: ( 1) 制动鼓、蹄为绝对刚性 ; ( 2) 在外力作用下,变形仅发生在摩擦衬片上 ; ( 3) 压力与变形符合虎克定律 由于本次设计采用的是领从蹄式的制动鼓,现就领从蹄式的制 动鼓 制动蹄摩擦面nts 22 的压力分布规律进行分析。 如图 3.5 所示,制动蹄在张开力 P 作用下绕支承销 O 点转动张开,设其转角为 ,则蹄片上某任意点 A 的位移 AB 为 AB = AO ( 3.19) 式中; AO 制动蹄的作用半径。 由于制动鼓刚性对制动蹄运动的限制,则其径向位移分量将受压缩,径向压缩为AC c o sA C A B c o sA C O A 图 3.5 制动摩擦片径向变形分析简图 从图 3.5 中的几何关系可看到 s inco s OODOAO AC = sinOO 因为 OO 为常量,单位压力和变形成正比,所以蹄片上任意一点压力可写成 sin0qq (3.20) 式中:0q摩擦片上单位压力。 即 制动器蹄片上压力呈正弦分布,其最大压力作用在与 OO 连线呈 90的径向线上 。 上述分析对于新的摩擦衬片是合理的,但制动器在使用过程中摩擦衬片有磨损,摩擦衬片在磨损的状况下,压力分布又会有差别。按照理论分析,如果知道摩擦衬片nts 23 的磨损特性,也可确定摩擦衬片磨损后的压力分布规律。根据国外资料,对于摩擦片磨损具有如下关系式 fqvKW 11 ( 3.21) 式中: W1 磨损量; K1 磨损常数; f 摩擦系数; q 单位压力; v 磨擦衬片与制动鼓之间的相对滑动速度。 图 3.6 作为磨损函数的压力分布值 通过分析计算所得压力分布规律如图 3.6 所示。图中表明在第 11 次制动后形成的单位面积压力仍为正弦分布 sin132q 。如果摩擦衬片磨损有如下关系: 2222 vfqKW ( 3.22) 式中: 2K 磨损常数。 则其磨损后的压力分布规律为 sinCq (C 也为一常数 )。结果 表 示于图 3.6。 nts 24 3.5.2 制动器因数及摩擦力矩分析计算 如前所述,通常先通过对制动器摩擦力矩计算的分析,再根据其计算式由定义得出制动器因数 BF 的表达式。 假设 鼓式制动器中制动蹄只具有一个自由度运动, 由此可得 : ( 1) 定出制动器基本结构尺寸、摩擦片 包角及其位置布置参数,并规定制动鼓旋转方向 ; ( 2) 参见 3.4.1 节确定制动蹄摩擦片压力分布规律,令 sin0qq ; ( 3) 在张开力 P 作用下,确定最大压力0q值 。 参见图 3.7, 所对应的圆弧,圆弧面上的半径方向作用的正压力为 qRd ,摩擦力为 fqRd 。把所有的作用力对 O 点取矩,可得 ph=21 0 qRMsin2 d -21 0 fqR(R-Mcos )sin d ( 3.23) 据此方程式可求出0q的值 。 图 3.7 制动蹄摩擦力矩分析计算 4、 计算沿摩擦片全长总的摩擦力矩 Tf=21 0 fqR2 sin d =0fqR2 (cos 1 -cos 2 ) ( 3.24) 5、 由公式 (3.9)导出制动器因数 由于导出过程的繁琐 , 下面对 支承销式领 从蹄制动器 的制动因数进行分析计算 。 单个领蹄的制动蹄因数 BFTl nts 25 fBraArfhBFT 1(3.25) 单个从蹄的制动蹄因数 BFT2 fBraArfhBFT 2(3.26) 以上两式中: 98.18640.0155 7.12382.01552384.01 fBraArfhBFT62.08640.0155 7.12382.01552384.02 fBraArfhBFT以上各式中有关结构尺寸参数见图 3.8。 整个制动器因数 BF 为 60.262.0
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。