ss二次函数套四边形.doc_第1页
ss二次函数套四边形.doc_第2页
ss二次函数套四边形.doc_第3页
ss二次函数套四边形.doc_第4页
ss二次函数套四边形.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学习是一种生活! 掌握自己的命运!二次函数套四边形【总结反思】【例题解析】【1.套平行四边形】1.1(1)在图1,2,3中,给出平行四边形的顶点的坐标(如图所示),写出图1,2,3中的顶点的坐标,它们分别是, , ;图1图2图3(2)在图4中,给出平行四边形的顶点的坐标(如图所示),求出顶点的坐标(点坐标用含的代数式表示);图4归纳与发现(3)通过对图1,2,3,4的观察和顶点的坐标的探究,你会发现:无论平行四边形处于直角坐标系中哪个位置,当其顶点坐标为(如图4)时,则四个顶点的横坐标之间的等量关系为 ;纵坐标之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线和三个点,(其中)问当为何值时,该抛物线上存在点,使得以为顶点的四边形是平行四边形?并求出所有符合条件的点坐标1.2如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2 (1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由1.3如图,在平面直角坐标系中,O为原点,点A、C的坐标分别为(2,0)、(1,)将绕AC的中点旋转1800,点O落到点B的位置抛物线经过点A,点D是该抛物线的顶点(1) 求a的值,点B的坐标;(2) 若点P是线段OA上一点,且,求点P的坐标;(3) 若点P是x轴上一点,以P、A、D为顶点作平行四边形,该平行四边形的另一顶点在y轴上写出点P的坐标(直接写出答案即可)【2.特殊平行四边形】2.1如图,对称轴为直线的抛物线经过点A(6,0)和B(0,4)(1)求抛物线解析式及顶点坐标;(2)设点E(,)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形求平行四边形OEAF的面积S与之间的函数关系式,并写出自变量的取值范围; 当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形? 是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由B(0,4)A(6,0)EFO2.2已知圆P的圆心在反比例函数图象上,并与x轴相交于A、B两点 且始终与y轴相切于定点C(0,1)(1) 求经过A、B、C三点的二次函数图象的解析式;(2) 若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形2.3已知与是反比例函数图象上的两个点(1)求的值;(2)若点,则在反比例函数图象上是否存在点,使得以四点为顶点的四边形为梯形?若存在,求出点的坐标;若不存在,请说明理由2.4已知,在RtOAB中,OAB900,BOA300,AB2。若以O为坐标原点,OA所在直线为轴,建立如图所示的平面直角坐标系,点B在第一象限内。将RtOAB沿OB折叠后,点A落在第一象限内的点C处。(1)求点C的坐标;(2)若抛物线(0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作轴的平行线,交抛物线于点M。问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由。注:抛物线(0)的顶点坐标为,对称轴公式为 【3.套三角形】3.1已知:如图,抛物线经过、三点(1)求抛物线的函数关系式;(2)若过点C的直线与抛物线相交于点E (4,m),请求出CBE的面积S的值;(3)在抛物线上求一点使得ABP0为等腰三角形并写出点的坐标;(4)除(3)中所求的点外,在抛物线上是否还存在其它的点P使得ABP为等腰三角形?若存在,请求出一共有几个满足条件的点(要求简要说明理由,但不证明);若不存在这样的点,请说明理由xyCBAE11O3.2 如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PEDQ交AQ于E,作PFAQ交DQ于F.(1)求证:APEADQ;(2)设AP的长为x,试求PEF的面积SPEF关于x的函数关系式,并求当P在何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论