




已阅读5页,还剩77页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、。2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生 (1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子:。(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“”(读作负)号来表示,如上面的3、8、47。(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。2)正数是大于0的数,负数是的数,0既不是正数也不是负数。【课堂练习】: 1. P3第一题到第四题(直接做在课本上)。 2小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_,-4万元表示_。3已知下列各数:-,3.14,+3065,0,-239;则正数有_;负数有_。4下列结论中正确的是( )A0既是正数,又是负数BO是最小的正数C0是最大的负数 D0既不是正数,也不是负数 5给出下列各数:-3,0,+5,+3.1,2004,+2010;其中是负数的有( )A2个B3个C4个D5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做,小于0的数叫做。(2)正数是大于0的数,负数是的数,0既不是正数也不是负数。【拓展训练】:1零下15,表示为_,比O低4的温度是_。2地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_地,最低处为_地3“甲比乙大-3岁”表示的意义是_。4如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。【总结反思】:课题:1.1正数和负数(2)【学习目标】:1、会用正、负数表示具有相反意义的量;2、通过正、负数学习,培养学生应用数学知识的意识;【学习重点】:用正、负数表示具有相反意义的量;【学习难点】:实际问题中的数量关系;【导学指导】一、知识链接. 通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用_ 和_ 来分别表示它们。问题:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明。参考例子:温度表示中的零上,零下和零度。二.自主探究问题:(课本第4页例题)先引导学生分析,再让学生独立完成例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率;解:(1)这个月小明体重增长_ ,小华体重增长_ ,小强体重增长_ ;2)六个国家2001年商品进出口总额的增长率:美国_ 德国_ 法国_ 英国_ 意大利_ 中国_ 【课堂练习】1课本第4页练习2、阅读思考 (课本第8页)用正负数表示加工允许误差;问题:直径为30.032mm和直径为29.97的零件是否合格?【要点归纳】1、本节课你有那些收获?2、还有没解决的问题吗?【拓展训练】1)甲冷库的温度是-12C,乙冷库的温度比甲冷酷低5C,则乙冷库的温度是 ;2)一种零件的内径尺寸在图纸上是90.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?【总结反思】:课题:1.2.1有理数【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,那么你能写出3个不同类的数吗?.(4名学生板书)_二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来 分为类,分别是:引导归纳:统称为整数,统称为有理数。问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳 2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -, -5, , , 0.1, -5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类 或者 【拓展训练】1、下列说法中不正确的是( )A-3.14既是负数,分数,也是有理数B0既不是正数,也不是负数,但是整数c-2000既是负数,也是整数,但不是有理数DO是正数和负数的分界2、在下表适当的空格里画上“”号有理数整数分数正整数负分数自然数-8是-2.25是是0是【总结反思】:课题:1.2.2数轴【学习目标】:1、掌握数轴概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,利用数轴上的点表示有理数;3、领会数形结合的重要思想方法;【重点难点】:数轴的概念与用数轴上的点表示有理数;【导学指导】一、知识链接1、观察下面的温度计,读出温度.分别是C、C、C;2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境?东 汽车站请同学们分小组讨论,交流合作,动手操作二、自主探究1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?2、自己动手操作,看看可以表示有理数的直线必须满足什么条件?引导归纳:1)、画数轴需要三个条件,即、方向和长度。2)数轴【课堂练习】1、请你画好一条数轴 2、利用上面的数轴表示下列有理数 1.5, 2, 2, 2.5, , 0;3、 写出数轴上点A,B,C,D,E所表示的数:三、寻找规律1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2、每个数到原点的距离是多少?由此你又有什么发现?3、进一步引导学生完成P9归纳【要点归纳】:画数轴需要三个条件是什么?【拓展练习】1、在数轴上,表示数-3,2.6,0,-1的点中,在原点左边的点有个。2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是( )A.-5, B.-4 C.-3 D.-2 3、你觉得数轴上的点表示数的大小与点的位置有什么关系? 【总结反思】:课题:1.2.3相反数【学习目标】:1、掌握相反数的意义;2、掌握求一个已知数的相反数;3、体验数形结合思想;【学习重点】:求一个已知数的相反数;【学习难点】:根据相反数的意义化简符号。【导学指导】一、温故知新1、数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、2、5、+2 这四个数的点。3、观察上图并填空: 数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是。 从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于原点对称。二、自主学习自学课本第10、11的内容并填空: 1、相反数的概念像2和2、5和5、3和3这样,只有不同的两个数叫做互为相反数。2、练习(1)、2.5的相反数是,和是互为相反数,的相反数是2010;(2)、a和互为相反数,也就是说,a是的相反数例如a=7时,a=7,即7的相反数是7.a=5时,a=(5),“(5)”读作“5的相反数”,而5的相反数是5,所以,(5)=5你发现了吗,在一个数的前面添上一个“”号,这个数就成了原数的(3)简化符号:(0.75)=,(68)=,(0.5 )=,(3.8)=;(4)、0的相反数是.3、数轴上表示相反数的两个点和原点的距离。【课堂练习】 P11第1、2、3题【要点归纳】:1、本节课你有那些收获?2、还有没解决的问题吗?【拓展训练】1.在数轴上标出3,1.5,0各数与它们的相反数。2.1.6的相反数是,2x的相反数是,a-b的相反数是;3. 相反数等于它本身的数是,相反数大于它本身的数是;4.填空:(1)如果a13,那么a;(2)如果-a5.4,那么a;(3)如果x6,那么x;(4)x9,那么x;5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。【总结反思】:课题:1.2.4绝对值【学习目标】:1、理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌握求一个已知数的绝对值和有理数大小比较的方法;3、体验运用直观知识解决数学问题的成功;【重点难点】:绝对值的概念与两个负数的大小比较【导学指导】一、知识链接问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)二、自主探究1、由上问题可以知道,10到原点的距离是,10到原点的距离也是到原点的距离等于10的数有个,它们的关系是一对。这时我们就说10的绝对值是10,10的绝对值也是10;例如,3.8的绝对值是3.8;17的绝对值是17;6的绝对值是一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。2、练习(1)、式子-5.7表示的意义是。(2)、2的绝对值表示它离开原点的距离是个单位,记作;(3)、24=. 3.1=,=,0=;3、思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。用式子表示就是:1)、当a是正数(即a0)时,a=;2)、当a是负数(即a0)时,a=;(2)当a是负数(即a”号连接起来。4,-|-2|,-4.5,1,04.下列语句中正确的是().数轴上的点只能表示整数 .数轴上的点只能表示分数.数轴上的点只能表示有理数.所有有理数都可以用数轴上的点表示出来5. -5的相反数是;-(-8)的相反数是;- +(-6)=0的相反数是; a的相反数是;6. 若a和b是互为相反数,则a+b=。7如果x6,那么x_;x9,那么x_8 |-8|=;-|-5|=;绝对值等于4的数是_。9如果,则,10.有理数中,最大的负整数是,最小的正整数是,最大的非正数是。【要点归纳】:【拓展训练】:1绝对值等于其相反数的数一定是( )A负数B正数C负数或零D正数或零2.已知a、b都是有理数,且|a|=a,|b|=-b、,则ab是( )A负数; B.正数; C.负数或零; D.非负数3,则; ,则4如果,则的取值范围是( )AO BO CODO5绝对值不大于11的整数有( )A11个B12个C22个D23个【总结反思】:一知识回顾(五)、有理数的运算(1)有理数加法法则:(2)有理数减法法则:(3)有理数乘法法则:(4)有理数除法法则:(5)有理数的乘方:求的积的运算,叫做有理数的乘方。即:an=aaa(有n个a)从运算上看式子an,可以读作;从结果上看式子
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空机务工程师职业资格评定试题及答案解析
- 高粱购销合同模板(3篇)
- n2级护理岗位考试试题及答案
- 环保项目投资民间借款合同
- 任城区人才公寓租住管理与租客权益保障协议
- 商业地产业主与物业物业服务合同范本
- 股权转让协议范本中的业绩承诺条款详解
- 2025公务员能源局面试题目及答案
- 辅警专业知识试题及答案
- 跳棋的教学课件怎么写
- YY/T 0698.2-2022最终灭菌医疗器械包装材料第2部分:灭菌包裹材料要求和试验方法
- 沪教牛津版小学英语五年级上册全册集体备课含教学计划及进度表
- 全国统一建筑安装工程工期定额
- 5.《秋天的怀念》课件+教学设计+视频朗读
- 上海破产管理人扩容考试参考题库(含答案)
- 涉河建设项目审查管理体会及探讨课件-涉河建设项目管理及建设方案审查技术标准课件
- DB44∕T 1168-2013 轮扣式钢管脚手架构件
- NMR有机氟谱课件
- 急诊科标本采集错误应急预案脚本
- elements-of-communication
- 老港镇中心小学三年发展规划中期评估自评报告
评论
0/150
提交评论