流体应变率张量_第1页
流体应变率张量_第2页
流体应变率张量_第3页
流体应变率张量_第4页
流体应变率张量_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 7运动流体应变率张量 前面提到过速度梯度 它是流体作一维平行流动时 流体的剪切应变率分量 本节将讨论流体做任意运动时的运动学特性 重点介绍运动流体的应变率张量及其各分量的物理意义 刚体运动可分解成 平动和转动流体运动 除平动 转动外还有变形 1 7 1亥姆霍兹速度分解定理 V0 V 显然 是M点相对于M0点的相对速度 流体运动虽复杂 但取一微元体 分析其中的运动 将得到一些规律性认识 在时刻t的流场中取一点邻域中的任意一点 设M0点的速度为 由泰勒展开 邻点M的速度 写成分量形式 用矩阵形式 对称 反对称 根据矩阵运算法则 或 其中 流体的应变率张量或变形速率张量 对称的 而 与M0点相同的平动速度 流体变形在M点引起的速度 绕M0点转动在M点引起的速度 这就是亥姆霍兹速度分解定理 是流体的转动角速度矢量 1 7 2流体微团运动分析 为了方便分析 考虑一些流体的特殊运动 t时刻 选正六面体微团 如下图 研究其一侧面abcd 若a点速度为u v 则 a t时刻 b t t时刻 1 线变形分析 相对伸长速度 首先设只有应变率张量中的其它均为0 因此 表示线段的相对伸长率 相对伸长速度 同理 存在各质点在连线方向的速度梯度是产生线变形的原因 经过dt时刻 abcd将运动到a1b1c1d1 如左图 ab边的相对伸长率 分别表示y z方向线段的相对伸长率 各边的相对伸长 将引起流体微团体积膨胀 在 t时刻后 正方形体积 已变为 如果 表示流体相对体积膨胀率为0 流体是不可压缩流体 流体微团的相对体积膨胀率为 密度不变可简单地记做 时时 处处 2 角变形分析 角变形速度 考虑应变率张量中只有 经过dt时刻 abcd将运动到a1b1c1d1 产生了角变形 bad的减少量为 平均角变形 剪切 变形率为 意义类似 直角的平均减小率 3 流体微团旋转分析 旋转角速度 由于 x y a1b1c1d1近似为菱形 则有 转动角速度为 表示流体微团以 x y z 为瞬心 绕平行于z轴旋转的角速度 经过dt时刻 abcd将运动到a1b1c1d1 对角线ac经时间转动了角度 从而 存在不在质点连线方向的速度梯度是产生旋转和角变形的原因 也有类似的意义 它们三者一起组成了角速度矢量 且有 各分量都有明确的物理意义 其中三个代表线段的相对伸长率 速度 三个代表角变形率 速度 三个代表流体本身的自转角速度 另外速度散度代表流体体积相对膨胀率 例 平面流场ux ky uy 0 k为大于0的常数 分析流场运动特征 解 流线方程 线变形 角变形 旋转角速度 x y o 流线是平行与x轴的直线族 无线变形 有角变形 顺时针方向为负 例 平面流场ux ky uy kx k为大于0的常数 分析流场运动特征 解 流线方程 流线是同心圆族 线变形 无线变形 角变形 无角变形 旋转角速度 逆时针的旋转 刚体旋转流动 1 有旋流动 2 无旋流动 即 有旋流动和无旋流动 例 速度场u ay a为常数 v 0 流线是平行于x轴的直线 此流动是有旋流动还是无旋流动 解 是有旋流 x y o ux 相当于微元绕瞬心运动 例 速度场ur 0 u b r b为常数 流线是以原点为中心的同心圆 此流场是有旋流动还是无旋流动 解 用直角坐标 x y o r u v u p 是无旋流 微元平动 小结 流动作有旋运动或无旋运动仅取决于每个流体微元本身是否旋转 与整个流体运动和流体微元运动的轨迹无关 1 7 3流体运动的分类 1 不可压缩流动和可压缩流动这是从流体微团运动分析结合物理性质的角度分类方法 如果流体在运动过程中 质量不变的情况下 体积相对膨胀率很小 接近于零 意味着密度保持不变 此时可以认为流动是不可压缩的 体积膨胀率为0 则有密度不变可简单地记做 时时 处处 2 粘性流动和无粘性流动这是从流体运动和剪切变形的角度来考虑的分类方法 静止的流体不呈现粘性 对于运动流体 在实际应用过程中常通过流体中粘性切应力与其它力 主要是流动惯性力 在大小量级上的比较来考虑粘性效应 把忽略粘性效应的流动称为无粘性流体流动 简单地令无粘性流动在流体力学理论中占有重要地位 3 定常流动和非定常流动这是从物理量对时间t的依赖关系的角度来考虑的分类方法 流场中速度等物理量不随时间变化的流动称为定常流动 数学上简单地表示为定常是相对的 不定常是绝对的 对于随时间变化缓慢的流动 如大容器的小孔出流等定常流动的研究和处理要比非定常流动要容易得多 4 一维流动 二维流动和三维流动这是从物理量对空间坐标 x y z 的依赖关系的角度来考虑的分类方法 如果流动中 所有物理量只与一个空间变量有关 则称此流动为一维流动 依次类推 实际工程中很难找到真正一维流动 在微元流管中的流动是最接近一维的流动 有限截面管中流动 有时为了计算方便 仅考虑按截面平均后的量 此时可看作一维流动 或准一维流动 二维流动包括平面流动和轴对称流动 三维流动是一种空间流动 5 有旋流动和无旋流动这是从流体微团运动分析的角度来考虑的分类方法 如果在整个流场中流体微团的旋转角速度为0 则称此流动为无旋流动 在流速分布已知的情况下可根据速度的旋度是否为0加以判断 一般而言 粘性流体的流动总是有旋的 无粘性流体的流动有可能有旋也可能无旋 例如当流体既忽略粘性又忽略重力时 从静止启动的流动就是无旋的 大气中的气旋和海洋环流等都是典型的有旋运动 除了这些分类方法 还有粘性流体运动中的层流 湍流 可压缩流动还有亚声速和超声速之分等 1 8流体中的作用力与应力张量 按作用方式分为体积力和表面力 1 8 1体积力 体积力的大小与流体的体积或质量成正比 与该体积或质量之外的流体存在与否无关 因此体积力是非接触力 具有外力性质 x y z A 体积力分布密度 单位是m s2 与加速度单位相同 又称质量力 它是作用在每个流体质点上的力 如重力 电磁力 惯性力等 若已知f 则作用在有限体积内流体上的总体积力为 重力场中 忽略体积力 惯性力 直线惯性力 曲线惯性力 1 8 2表面力与应力 表面力是接触力 本质上是内力 但流体与固体接触面上的表面力 对流体是外力 n 可定义 称为应力矢量 简称应力 单位N m2 表示t时刻在点 x y z 上作用以n为法线的单位面积流体上的表面力 表面力是外界作用在所考察流体接触面上的力 力的大小和接触面的大小成正比 与流体质量无关 A pn pnn pnt P n n 注 1 pn的下标n表示所考察流体面外法线方向 因此 作用在与之接触的表面应力表示为 根据牛顿第三定律有 所以充分显示了应力的内力本质 2 在粘性不能忽略的运动流体中 pn的作用方向并不与考查面垂直 此时可将分解 一旦pn已知 则作用在整个面上的表面力的合力 1 8 3流场中任一点的应力状态 应力张量 下面将推导应力与的关系 并引出应力张量 为研究一点处面元上的表面力 先在流体中以M点为顶点做一个微四面体 如图 设MA x MB y MC z ABC的法向单位矢量为 或简写为 设 ABC的面积为 S 于是 MBC MCA MAB的面积可分别以 Sx Sy Sz表示为 y p y 四面体体积 受力分析作用在四面体上的力有表面力和质量力 包括惯性力 表面力与面积成正比 为二阶小量 质量力与体积成正比为三阶小量 当四面体缩小为一点 忽略三阶小量 则表面力的合力将等于0 则有 由 得 在直角坐标系中的投影 写成矩阵形式 现将上式写成为 其中 称为应力张量 分量第一个下标表示应力作用面法向 第二个下标表示应力的投影方向 根据力矩平衡 表明了表面应力与外法向单位矢量的关系 除了表示二者之间的关系外还引入了应力张量 且应力张量不再与有关 并只与空间点位置和时间有关 由九个分量组成的应力张量完全表达了给定点M及给定时刻的应力状态 一旦该时刻在该处的面积元从而其外法向单位矢量确定后 则该面积元上的应力就随之确定 不再与有关 它只是空间点M及时间t的函数 自然 应力张量各分量与坐标系的选择有关 但正如矢量的分量也与坐标的选取有关 矢量本身与坐标选取无关一样 应力张量也不依赖于坐标的选取 它们只是时间和空间点函数 1 8 4静止流体与运动的无粘性流体中的应力张量 六个切应力分量均为0 由于流体只能承受压力而不能承受拉力 因此令 于是 压强 上式说明了流体中静压力的两个重要特性 流场中一点静压强 压力 大小各向等值 即与过同一点作用面的方位无关 因此p是个标量物理量 它只是该点的空间坐标的函数 2 一点上的静压 压力 总是垂直指向过该点的作用面 例题 流体内某处的应力张量为 问 作用于平面x 3y z 1外侧 离开原点一侧 上的应力矢量是什么 这个平面上的应力矢量的法向和切向分量是什么 解 对平面x 3y z 1外侧法向矢量为 故 该应力矢量在平面x 3y z 1外侧法向分量为 又设应力矢量的切向分量为 则 故 复习思考题 1 何为连续介质 流体力学中为什么要引入连续介质假设 什么条件下不可以应用连续介质假设 2 流体力学有哪些研究方法 各方法的优缺点是什么 3 什么是牛顿内摩擦定律 它的应用条件是什么 什么是牛顿流体和非牛顿流体 4 流体的动力粘性系数和运动粘性系数有何不同 各自的单位是什么 5 流体粘性与哪些因素有关 它们随温度是如何变化的 一 概念 6 什么是理想流体 为什么要引进理想流体这一概念 理想流体有无能量损失 7 什么情况下要考虑流体的压缩性 为什么液体通常可以看成不可压缩流体 气体在速度小于100m s时也可以看做是不可压缩流体 8 描述流体运动有哪两种方法 两种方法有什么不同 两种方法是如何转换的 9 什么是流线与迹线 流线有什么性质 在什么情况下流线与迹线重合 流线与迹线的方程是什么 如何从流线性质的角度解释非流线型物体在运动时形状阻力大 10 什么是物质导数 拉格朗日描述和欧拉描述下有何不同 11 在欧拉法中 质点加速度由哪两部分组成的 12 什么是平均流速 为什么要引入平均流速这一概念 13 均匀流一定是恒定流 定常流 非均匀流一定是非定常流 这种说法是否正确 如何判别流动是均匀流还是非均匀 定常还是非定常 14 什么是一维 二维和三维流动 什么条件下流体流动可以简化成一维 二维流动是平面流动吗 15 什么是不可压缩流动 如何判别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论