中考数学试题分类--综合题.doc_第1页
中考数学试题分类--综合题.doc_第2页
中考数学试题分类--综合题.doc_第3页
中考数学试题分类--综合题.doc_第4页
中考数学试题分类--综合题.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图11.已知:如图14,在中,为边上一点,(1)试说明:和都是等腰三角形;(2)若,求的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形(标明各角的度数)2.已知:矩形纸片中,厘米,厘米,点在上,且厘米,点是边上一动点按如下操作:步骤一,折叠纸片,使点与点重合,展开纸片得折痕(如图1所示);步骤二,过点作,交所在的直线于点,连接(如图2所示)(1)无论点在边上任何位置,都有 (填“”、“”、“”号);(2)如图3所示,将纸片放在直角坐标系中,按上述步骤一、二进行操作:当点在点时,与交于点点的坐标是( , );当厘米时,与交于点点的坐标是( , );当厘米时,在图3中画出(不要求写画法),并求出与的交点的坐标;(3)点在运动过程,与形成一系列的交点观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式APBCMD(P)EBC图10(A)BCDE6121824xy61218图3ANPBCMDEQT图23.如图12, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4) 点从出发以每秒2个单位长度的速度向运动;点从同时出发,以每秒1个单位长度的速度向运动其中一个动点到达终点时,另一个动点也随之停止运动过点作垂直轴于点,连结AC交NP于Q,连结MQ (1)点 (填M或N)能到达终点;(2)求AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;(3)是否存在点M,使得AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由图124.在直角梯形中,高(如图1)。动点同时从点出发,点沿运动到点停止,点沿运动到点停止,两点运动时的速度都是。而当点到达点时,点正好到达点。设同时从点出发,经过的时间为时,的面积为(如图2)。分别以为横、纵坐标建立直角坐标系,已知点在边上从到运动时,与的函数图象是图3中的线段。(1)分别求出梯形中的长度;(2)写出图3中两点的坐标;(3)分别写出点在边上和边上运动时,与的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中关于的函数关系的大致图象。(图1)(图3)(图1)(图1)(图1)(图1)(图2)5.如图16,在等腰梯形ABCD中,ADBC,AB=DC=50,AD=75,BC=135点P从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QKBC,交折线段CD-DA-AB于点E点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止设点P、Q运动的时间是t秒(t0)(1)当点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点P运动到AD上时,t为何值能使PQDC?(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)DEKPQCBA图16(4)PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由6.如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点在坐标轴上,动点从点出发,以的速度沿轴匀速向点运动,到达点即停止设点运动的时间为(1)过点作对角线的垂线,垂足为点求的长与时间的函数关系式,并写出自变量的取值范围;(2)在点运动过程中,当点关于直线的对称点恰好落在对角线上时,求此时直线的函数解析式;(3)探索:以三点为顶点的的面积能否达到矩形面积的?请说明理由yxBCPOAT(第28题图)7在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,并且原多边形上的任一点,它的对应点在线段或其延长线上;接着将所得多边形以点为旋转中心,逆时针旋转一个角度,这种经过和旋转的图形变换叫做旋转相似变换,记为,其中点叫做旋转相似中心,叫做相似比,叫做旋转角(1)填空: 如图1,将以点为旋转相似中心,放大为原来的2倍,再逆时针旋转,得到,这个旋转相似变换记为(,);如图2,是边长为的等边三角形,将它作旋转相似变换,得到,则线段的长为;BDE图1BDE图2图3(2)如图3,分别以锐角三角形的三边,为边向外作正方形,点,分别是这三个正方形的对角线交点,试分别利用与,与之间的关系,运用旋转相似变换的知识说明线段与之间的关系8.(1)在图1,2,3中,给出平行四边形的顶点的坐标(如图所示),写出图1,2,3中的顶点的坐标,它们分别是 , , ;图1图2图3(2)在图4中,给出平行四边形的顶点的坐标(如图所示),求出顶点的坐标(点坐标用含的代数式表示);图4归纳与发现(3)通过对图1,2,3,4的观察和顶点的坐标的探究,你会发现:无论平行四边形处于直角坐标系中哪个位置,当其顶点坐标为(如图4)时,则四个顶点的横坐标之间的等量关系为 ;纵坐标之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线和三个点,(其中)问当为何值时,该抛物线上存在点,使得以为顶点的四边形是平行四边形?并求出所有符合条件的点坐标9.如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(8,0),点N的坐标为(6,4)(1)画出直角梯形OMNH绕点O旋转180的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式; (3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由; (4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由德州市23(本题满分10分)解:(1)在中,在与中,;,和都是等腰三角形4分(2)设,则,即(有8个等腰三角形)解得(负根舍去)0(A)BCDE6121824xy61218FMGP.福建省宁德市26(1)(2);画图,如图所示解:方法一:设与交于点在中, 又,11分方法二:过点作,垂足为,则四边形是矩形,设,则在中,11分(3)这些点形成的图象是一段抛物线12分函数关系式:14分说明:若考生的解答:图象是抛物线,函数关系式:均不扣分河池市26 解:(1)点 M 1分(2)经过t秒时, 则,= 当时,S的值最大 (3)存在 设经过t秒时,NB=t,OM=2t 则,= 若,则是等腰Rt底边上的高是底边的中线 点的坐标为(1,0) 10分若,此时与重合点的坐标为(2,0) 杭州市24、(1)设动点出发秒后,点到达点且点正好到达点时,则(秒)则;(2)可得坐标为(3)当点在上时,;FGDEKPQCBA图9HQKCHDEPBA图8当点在上时,河北省26解:(1)t=(507550)5=35(秒)时,点P到达终点C(1分)此时,QC=353=105,BQ的长为135105=30(2分)(2)如图8,若PQDC,又ADBC,则四边形PQCD为平行四边形,从而PD=QC,由QC=3t,BA+AP=5t得50755t=3t,解得t=经检验,当t=时,有PQDC(4分)(3)当点E在CD上运动时,如图9分别过点A、D作AFBC于点F,DHBC于点H,则四边形ADHF为矩形,且ABFDCH,从而FH= AD=75,于是BF=CH=30DH=AF=40又QC=3t,从而QE=QCtanC=3t=4t(注:用相似三角形求解亦可)S=SQCE=QEQC=6t2;(6分)当点E在DA上运动时,如图8过点D作DHBC于点H,由知DH=40,CH=30,又QC=3t,从而ED=QH=QCCH=3t30S= S梯形QCDE=(EDQC)DH =120 t600(8分)(4)PQE能成为直角三角形(9分)当PQE为直角三角形时,t的取值范围是0t25且t或t=35(12分)(注:(4)问中没有答出t或t=35者各扣1分,其余写法酌情给分)连云港市28解:(1)在矩形中,1分,即,3分当点运动到点时即停止运动,此时的最大值为所以,的取值范围是4分yxBCPOAT(第28题答图2)21(2)当点关于直线的对称点恰好在对角线上时,三点应在一条直线上(如答图2)5分,点的坐标为设直线的函数解析式为将点和点代入解析式,得解这个方程组,得此时直线的函数解析式是8分yxBCPOAT(第28题答图3)E(3)由(2)知,当时,三点在一条直线上,此时点不构成三角形故分两种情况:(i)当时,点位于的内部(如答图3)过点作,垂足为点,由可得10分若,则应有,即此时,所以该方程无实数根所以,当时,以为顶点的的面积不能达到矩形面积的11分(ii)当时,点位于的外部(如答图4)此时12分若,则应有,即解这个方程,得,(舍去)由于,而此时,所以也不符合题意,故舍去所以,当时,以为顶点的的面积也不能达到矩形面积的综上所述,以为顶点的的面积不能达到矩形面积的-14分南京市.27解:(1),;(2)经过旋转相似变换,得到,此时,线段变为线段;经过旋转相似变换,得到,此时,线段变为线段,江西省南昌市.25解:(1),2分(2)分别过点作轴的垂线,垂足分别为,分别过作于,于点在平行四边形中,又,又,5分,设由,得由,得7分(此问解法多种,可参照评分)(3),或,9分(4)若为平行四边形的对角线,由(3)可得要使在抛物线上,则有,即(舍去),此时10分若为平行四边形的对角线,由(3)可得,同理可得,此时若为平行四边形的对角线,由(3)可得,同理可得,此时综上所述,当时,抛物线上存在点,使得以为顶点的四边形是平行四边形符合条件的点有,12分辽宁省十二市.26(1) 利用中心对称性质,画出梯形OABC 1分A,B,C三点与M,N,H分别关于点O中心对称,A(0,4),B(6,4),C(8,0) 3分(写错一个点的坐标扣1分)OMNHACEFDB8(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论