




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实验三 利用DFT分析连续信号频谱一、实验目的应用离散傅里叶变换(DFT),分析模拟信号x(t)的频谱。深刻理解利用DFT分析模拟信号频谱的原理,分析过程中出现的现象及解决方法。二、 实验原理连续周期信号相对于离散周期信号,连续非周期信号相对于离散非周期信号,都可以通过时域抽样定理建立相互关系。因此,在离散信号的DFT分析方法基础上,增加时域抽样的步骤,就可以实现连续信号的DFT分析。三、实验内容1. 利用FFT分析信号的频谱。(1) 确定DFT计算的各参数(抽样间隔,截短长度,频谱分辨率等);答:选取fm=25Hz为近似的最高频率,则抽样间隔T=0.02s 选取Tp=10s分析,则截短点数为N=500采用矩形窗,确定频域抽样点数为512点。fsam=50;Tp=10; N=600; T=1/fsam;t=0:T:Tp; x=exp(-2*t);X=T*fft(x,N);subplot(2,1,1);plot(t,x);xlabel(t);title(时域波形);w=(-N/2:N/2-1)*(2*pi/N)*fsam;y=1./(j*w+2);subplot(2,1,2);plot(w,abs(fftshift(X),w,abs(y),r-.);title(幅度谱);xlabel(w);legend(理论值,计算值,0); axis(-10,10,0,1.4)当fsam为50HZ时(2) 比较理论值与计算值,分析误差原因,提出改善误差的措施。2. 分析周期信号的频谱时,如果分析长度不为整周期,利用 fft函数计算并绘出其频谱,总结对周期信号进行频谱分析时,如何选取信号的分析长度。信号基频 信号周期,信号最高次谐频为 所以取如果分析长度不为整周期,比如取N=10,则函数代码为:T0=1; N=10; T=T0/N; % 周期T0、FFT的点数N、抽样间隔Tt=0:T:T0;x=cos(2*pi*5*t)+2*sin(2*pi*9*t); %周期信号 Xm=fft(x,N)/N; %利用FFT计算其频谱f=(-(N-1)/2:(N-1)/2)/N/T; %若N为偶数f=1/T/N*(-N/2:(N/2-1);stem(f,abs(fftshift(Xm); %画出幅度谱xlabel(f (Hz);ylabel(magnitude); title(幅度谱);截图为:频谱不对称,故应当周期来取,信号基频 信号周期,信号最高次谐频为 所以取按照N=19,取得的函数的截图为: 按照N=38,取得的函数的截图为:3. 假设一实际测得的一段信号的长度为0.4s,其表达式为x(t)=cos(2pif1t)+0.75 cos(2pif2t)其中f1=100Hz,f2=110Hz。当利用FFT近似分析该信号的频谱时,需要对信号进行时域抽样。试确定一合适抽样频率,利用DFT分析信号x(t)的频谱。若在信号截短时使用Hamming窗,由实验确定能够分辨最小谱峰间隔和信号长度的关系。若采用不同参数的Kaiser窗,重新确定能够分辨最小谱峰间隔和信号长度 的关系。答:最高次谐频为pw=220HZ 取w0=10pi = p=22 = N=46 选取抽样频率为fasm=2pw=440HZ; fasm=440;T0=0.4; N=46; T=1/fasm; % 周期T0、FFT的点数N、抽样间隔Tt=0:T:T0;x=cos(2*pi*100*t)+0.75*sin(2*pi*110*t); %周期信号 Xm=fft(x,N)/N; %利用FFT计算其频谱f=1/T/N*(-N/2:(N/2-1);stem(f,abs(fftshift(Xm); %画出幅度谱xlabel(f (Hz);ylabel(magnitude); title(幅度谱); 若在信号截短时使用Hamming窗,则函数代码为:%使用hamming对信号进行频谱分析fsam=440;Tp=0.2; N=46;T=1/fsam;t=0:T:Tp; N=Tp/T+1;f1=100;f2=110; y=cos(2*pi*f1.*t)+0.75*sin(2*pi*f2.*t); %周期信号 %选择非矩形窗hamming窗分析w = hamming(N);W=w.;x=y.*W;Xm=fft(x,N)/N; %利用FFT计算其频谱 f=1/T/N*(-N/2:(N/2-1);stem(f,abs(fftshift(Xm); %画出幅度谱xlabel(f (Hz);ylabel(magnitude);当Tp取0.1时,频谱图为约为10当Tp=0.2时=5固有=1/Tp可知信号长度Tp越大,Df值越大%使用kaiser对信号进行频谱分析fsam=440;Tp=0.2; N=46;T=1/fsam;t=0:T:Tp; N=Tp/T+1;f1=100;f2=110; y=cos(2*pi*f1.*t)+0.75*sin(2*pi*f2.*t); %周期信号 %选择非矩形窗kaiser窗分析 w = kaiser(N,0);W=w.; x=y.*W;Xm=fft(x,N)/N; %利用FFT计算其频谱 f=1/T/N*(-N/2:(N/2-1);stem(f,abs(fftshift(Xm); %画出幅度谱xlabel(f (Hz);ylabel(magnitude);Tp=0.1时频谱图为,=10Tp=0.2时频谱图为=5固有=1/Tp可知信号长度Tp越大,Df值越大4产生一个淹没在噪声中的信号x(t),例如由50Hz和120Hz的正弦信号以及一个零均值的随机噪声叠加而成。确定抽样间隔和信号截短长度,分析信号的频谱,指出50Hz和120Hz的正弦成分对应的谱峰位置,详细写出检测信号的步骤和原理。首先确定x(t)=x=cos(2*pi*f1*t)+0.75*sin(2*pi*f2*t)+normrnd(0,1); 其中f1=50;f2=120;再确定w0=10pi,N=55,fasm=480,Tp=0.2函数代码为:fsam=480;Tp=0.2; N=55; T=1/fsam;t=0:T:Tp; f1=50;f2=120; x=cos(2*pi*f1*t)+0.75*sin(2*pi*f2*t)+normrnd(0,1,1,1); %周期信号 Xm=fft(x,N)/N; %利用FFT计算其频谱f=(-(N-1)/2:(N-1)/2)/N/T; %若N为偶数f=1/T/N*(-N/2:(N/2-1);stem(f,abs(fftshift(Xm); %画出幅度谱xlabel(f (Hz);ylabel(magnitude);title(幅度谱 N=55);频谱图为: 可以从以上图中清楚的看出,50HZ的正弦成分对应的谱峰位置在50和-50的位置,而50HZ的正弦成分对应的谱峰位置约在120和-120的位置,与理论结果相符。四实验思考题1. 既然可直接由Fourier变换的定义计算连续信号的傅里叶变换,为何利用DFT分析连续信号的频谱?答:根据定义是可以根据傅里叶变换的定义直接计算连续信号的福利叶变换,但是定义区间是无限长,这在计算上是不可实施的,无论是人工计算还是通过计算机进行计算。而DFT是有限长的序列的傅里叶变换,在计算机上容易实现。再者,在数字信号处理中,希望能够利用数字方法直接计算常见的四种信号的频谱函数,这是需要的时域信号为有限长,其频谱也为有限项。因此常常利用DFT对序列进行频谱分析。2. 若信号持续时间无限,且无解析表达式,如何利用DFT分析其频谱?答:因为只要是有限长的离散序列都可以通过DFT对其进行频谱分析。故对于持续时间无限的信号,因首先得到能表征信号特征的离散序列,在对该离散序列进行DFT变换分析即可。这就涉及到模拟信号的数字化过程,具体方法是:(1)采样,根据信号的采样定理对该持续时间无限的序列进行采样。(2)量化,将采样得到的序列进行量化得到原模拟信号对应的离散序列,让后采用DFT对该序列进行频谱分析即可。3. 在利用DFT分析连续信号频谱时,会出现哪些误差?如何克服或改善这些误差?答,主要误差有:(1) 混叠现象:对于带限连续信号,只要提高抽样频率使之满足时域抽样定理;对于非带限信号,可以根据实际情况对其进行低通滤波,使之成为带限信号。工程中的信号一般都不是带限信号,连续信号在抽样前通常都进过一个低通滤波器(即抗混叠滤波器)进行低通滤波,以减少混叠误差,提高频谱分析精度。(2) 泄漏现象:在选择矩形窗口的长度时,适当增加窗的长度,可以提高频谱分辨率,但是不能减小旁瓣引起的频谱泄露,因此可以选择旁瓣幅度很小甚至为零的非矩形窗对信号进行加窗处理,就可以降低频谱泄露。(3) 栅栏现象:改善栅栏现象最常用的方法是在离散序列之后补零,得到一个比原有序列更长的序列,这样就可以增加频谱图中的很多细节,降低栅栏现象。4. 在利用DFT分析连续信号频谱时,如何选择窗函数?答:在用DFT分析连续信号频谱时,选择窗函数一般首选矩形窗,因为对信号进行加窗处理的目的是去截断信号,故一般情况下选择矩形窗就可以了。但是在对频谱分析精度要求高的情况下,就要合理选择非矩形窗,选择旁瓣幅值小甚至为零的非矩形窗以满足要求,提高频谱分析精度。5. 讨论序列后补零对频谱分析结果的影响。答:在序列后补零直接的影响就是增加了序列的长度。但是却提高了频谱分析的精度。因为序列补零后,序列长度增加了,由于抽样频率没有改变,因此频谱图中谱线之间的间隔变小了,从而显示出了更
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小儿腹泻病护理课件
- 大学生学校顶岗实习证明
- 大学生525心理健康月的工作总结
- 外贸业务员个人年终总结
- 广告制作售后质保合同范本
- 业主更改房屋性质协议书
- 专用汽车生产合作协议书
- 代理无产品合同协议范本
- simtrade工厂合同范本
- 乙方用工协议合同书模板
- 图解学习解读《全国护理事业发展规划(2021-2025年)》课件
- 26个字母练字帖打印
- 语文大单元教学的设计思路
- 装订质量要求及检验标准
- 小学生必背古诗75首(注音版)
- 1输变电工程施工质量验收统一表式(线路工程)
- 机械原理课程设计15吨压片机设计
- 网络设备巡检报告
- 2023年义务教育音乐2022版新课程标准考试测试题及答案
- GB/T 4513.7-2017不定形耐火材料第7部分:预制件的测定
- 服装购销合同范本服装购销合同
评论
0/150
提交评论