全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.4解直角三角形教学设计 一、教学内容分析本课时的内容是解直角三角形,为了引起学生对教学内容的兴趣,所以在本课时的开头引入了一个实际问题,从而自然过度到直角三角形中,已知两个元素求其他元素的情境中. 通过例题的讲解后引出什么是解直角三角形,从而了解解直角三角形的意义。通过讨论直角三角形的边与角之间的关系,到解直角三角形过程中,使学生能掌握解直角三角形的知识. 以及在解直角三角形时,选择合适的工具解,即优选关系式.从而能提高分析问题和解决问题的能力.二、教学目标1.知道解直角三角形的概念、理解直角三角形中五个元素的关系。2.通过综合运用勾股定理,掌握解直角三角形,逐步形成分析问题、解决问题的能力.3渗透数形结合的数学思想,养成良好的学习习惯三、教学重点及难点教学重点:掌握利用直角三角形边角关系解直角三角形教学难点:锐角三角比在解直角三角形中的灵活运用四、教学用具准备黑板、多媒体设备.五、教学过程设计一、创设情景 引入新课:如图所示,一棵大树在一次强烈的地震中倒下,树干断处离地面3米且树干与地面的夹角是30。大树在折断之前高多少米? 由30直角边等于斜边的一半就可得AB=6米。分析树高是AB+AC=9米。由勾股定理容易得出BC的长为3 米。当然对于特殊锐角的解题用几何定理比较简单,也可以用锐角三角函数来解此题。二、知识回顾问题:1在一个三角形中共有几条边?几个内角?(引出“元素”这个词语)2直角三角形ABC中,C=90,a、b、c、A、B这五个元素间有哪些等量关系呢?讨论复习师白:RtABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边、角关系(板书)(PPT)(1)两锐角互余AB90;(2)三边满足勾股定理a2b2c2;(3)边与角关系sinAcosB,cosAsinB,tanAcotB,cotAtanB.三、学习新课、例题分析例题1 在RtABC中,C=900,B=380,a=8,求这个直角三角形的其它边和角.分析:如图,本题已知直角三角形的一个锐角和一条直角边,那么首先要搞清楚这两个元素的位置关系,再分析怎样用合适的锐角三角比解决问题,在本题中已知边是已知角的邻边,所以可以用的锐角三角比是余弦和正切.(板书)解:C=900 A +B=900A=900B=900380=520cosB= c= =tanB=b=atanB=8tan3806.250另解:cotB= b= =注意:在解直角三角形的过程中,常会遇到近似计算,除特别说明外,边长保留四个有效数字. .学习概念定义:在直角三角形中,由已知元素求出所有未知元素的过程,叫做解直角三角形.例题分析例题2 在RtABC中,C=900,c=7.34,a=5.28,解这个直角三角形.分析:本题如图,已知直角三角形的一条直角边和斜边,当然首先用勾股定理求第三边,怎样求锐角问题,要记住解决问题最好用原始数据求解,避免用间接数据求出误差较大的结论.(板书)解:C=900,a2b2c2b=sinA=A 460 0B=900A900460 0=440 0.注意:在解直角三角形的过程中,常会遇到近似计算,除特别说明外,边长保留四个有效数字,角度精确到1。4、学会归纳通过上述解题,思考对于一个直角三角形,除直角外的五个元素中,至少需要知道几 个元素,才能求出其他元素?想一想:如果知道两个锐角,能够全部求出其他元素吗?如果只知道五个元素中的一个元素,能够全部求出其他元素吗?归纳结论:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出其余三个元素.说明 我们已掌握RtABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025厦门银行漳州分行社会招聘备考题库附答案详解(考试直接用)
- 2026“梦工场”招商银行乌鲁木齐分行寒假实习生招聘备考题库及答案详解(全优)
- 2025年甘肃省武威市凉州区下双镇选聘专业化管理大学生村文书备考题库附答案详解(满分必刷)
- 2025广东东莞市公安局南城分局工勤人员招聘6人备考题库含答案详解(能力提升)
- “梦工场”招商银行南昌分行2026寒假实习生招聘备考题库及答案详解(有一套)
- 2025年岱山县城市专职社区工作者招聘11人备考题库含答案详解(新)
- 2025重庆綦江区人民政府文龙街道办事处公益性岗位招聘7人备考题库含答案详解(基础题)
- 2026中国建设银行境内分支机构校园招聘备考题库附答案详解(达标题)
- 2025浙江宁波郭巨街道招聘编外人员2人备考题库附答案详解
- 2026中国民生银行校园招聘暨实习生招聘备考题库含答案详解(b卷)
- 护理程序试题附答案
- 供应室清洗流程
- 《练习十九》习题课件
- 标准订货单模板及填写指南
- 2025年驾照新规理论考试C1理论考试试题题库及答案(共800题)
- 2025年外包可行性分析报告
- ERCP麻醉管理专家共识(2025版)解读 2
- 定制家具生产员工手册全套模板
- 公安机关保密知识培训课件
- 2025年互联网医院运营模式在医疗旅游市场中的拓展可行性研究报告
- 平安建设工作汇报
评论
0/150
提交评论