




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五模块平面向量第二十三讲平面向量的概念及线性运算 回归课本 1 向量的概念 1 把既有大小又有方向的量叫做向量 2 把只有大小 没有方向的量 如年龄 身高 长度 面积 体积 质量等 称为数量 3 向量的大小叫做向量的长度 或模 长度为零的向量叫零向量 记作0 零向量的方向任意 规定零向量与任意向量平行 共线 4 相等向量是指大小相等 方向相同的向量 相反向量是指大小相等 方向相反的向量 规定零向量的相等向量是0 零向量的相反向量是0 5 方向相同或相反的向量叫平行向量 也叫共线向量 长度为1的向量叫做单位向量 2 向量的线性运算 1 向量加法的定义已知向量a b 如图 平面内任取一点a 作b 再作则叫做a与b的和 记作a b 即求两个向量和的运算叫做向量的加法 2 向量求和的三角形法则利用向量加法的定义求两个向量和的作图法则 叫做向量求和的三角形法则 在运用此法则时 要注意 首尾相接 即两个向量的和向量是从第一个向量的起点指向第二个向量终点的向量 3 向量求和的平行四边形法则已知两个不共线向量a b 作对a b d三点不共线 以ab ad为邻边作平行四边形abcd 则对角线上的向量是 a b 这个法则叫做两向量求和的平行四边形法则 4 向量的减法向量a加上向量b的相反向量叫做a与b的差 记作a b 若则 5 实数与向量积的定义 实数 与向量a的积是一个向量 记作 a a a 当 0时 a与a方向相同 0时 a与a方向相反 0时 a 0 6 向量的加法 减法和向量的数乘的综合运算通常叫做向量的线性运算 向量加法的交换律表达式为a b b a 向量加法的结合律表达式为 a b c a b c 若 为实数 则 a a a a a a b a b 3 向量共线的条件平行向量基本定理 如a b 则a b 如果a b b 0 则存在惟一实数 使a b 考点陪练 答案 b 答案 b a a b c三点必在同一直线上b abc必为等腰三角形且 b为顶点c abc必为直角三角形且 b为直角d abc必为等腰直角三角形 答案 c 答案 d 答案 c 类型一向量的有关概念解题准备 准确理解向量的基本概念是解决这类题目的关键 共线向量即为平行向量 非零向量平行具有传递性 两个向量方向相同或相反就是共线向量 与向量长度无关 两个向量方向相同且长度相等 才是相等向量 共线向量或相等向量均与向量起点无关 典例1 判断下列命题是否正确 1 若 a b 则a b 2 若a b c d是不共线的四点 则是四边形abcd为平行四边形的充要条件 3 若a b b c 则a c 4 a b的充要条件是 5 a b 是a b的必要不充分条件 6 平行向量就是共线向量 7 相反向量一定是平行向量 8 平面内4个不同点a b c d共线的充要条件是存在非零实数k 使得 9 已知a是任一个非零向量 则是一个单位向量 解 1 不正确 两个向量的长度相等 但它们的方向不一定相同 因此 由 a b 不能推出a b 2 正确 且又 a b c d是不共线的四点 四边形abcd是平行四边形 反之 若四边形abcd是平行四边形 则且与方向相同 因此 3 正确 a b a b的长度相等且方向相同 又 b c b c的长度相等且方向相同 a c的长度相等且方向相同 故a c 4 不正确 当a b且方向相反时 即使 a b 也不能得到a b 故不是a b的充要条件 而是必要不充分条件 5 正确 a b a b 但a b a b a b 是a b的必要不充分条件 6 正确 不同于平面几何中的平行与共线的概念 向量的平行与共线是同一概念 7 正确 由相反向量的定义可知 7 正确 8 不正确 点的共线与向量的共线是不同的概念 9 正确 由单位向量的定义可知模长为1的向量即为单位向量 而 答案 1 4 8 不正确 2 3 5 6 7 9 正确 反思感悟 熟练掌握有关基本概念是解决此类小题的关键 类型二向量的线性运算及应用解题准备 1 向量的加法 1 定义 求两个向量和的运算 叫做向量的加法 2 法则 三角形法则 平行四边形法则 3 运算律 a b b a a b c a b c 2 向量的减法 1 定义 求两个向量差的运算 叫做向量的减法 2 法则 三角形法则 3 常用于向量式的化简 3 实数与向量的积 1 定义 实数 与向量a的积是一个向量 记作 a 规定 a a 当 0时 a的方向与a的方向相同 当 0时 a的方向与a的方向相反 当 0时 a 0 由此可见 总有 a与a平行 2 运算律 ua u a u a a ua a b a b 反思感悟 在求向量时要尽可能转化到平行四边形或三角形中 选用从同一顶点发现的基本向量或首尾相连的向量 运用向量加 减法运算及数乘运算来求解 即充分利用相等向量 相反向量和线段的比例关系 运用三角形 平行四边形法则 充分利用三角形中的中位线 相似三角形对应边成比例的平面几何的性质 把未知向量转化为与已知向量有直接关系的向量来求解 类型三数乘向量与共线向量定理的应用解题准备 1 向量共线是指存在实数 使两向量互相表示 2 向量共线的充要条件中 通常只有非零向量才能表示与之共线的其他向量 要注意待定系数法的运用和方程思想 3 证明三点共线问题 可用向量共线来解决 但应注意向量共线与三点共线的区别与联系 当两向量共线且有公共点时 才能得出三点共线 2 ka b与a kb共线 存在实数 使ka b a kb 即ka b a kb k a k 1 b a b是不共线的两个非零向量 k k 1 0 k2 1 0 k 1 反思感悟 1 向量共线的充要条件中要注意当两向量共线时 通常只有非零向量才能表示与之共线的其他向量 要注意待定系数法的运用和方程思想 2 证明三点共线问题 可用向量共线来解决 但应注意向量共线与三点共线的区别与联系 当两向量共线且有公共点时 才能得到三点共线 错源一忽视零向量性质致误 典例1 下列叙述错误的是 若a b b c 则a c 若非零向量a与b方向相同或相反 则a b与a b之一的方向相同 a b a b a与b方向相同 向量b与向量a共线的充要条件是有且只有一个实数 使得b a 若 a b 则a b 剖析 忽视零向量的特殊性是本题出错的主要原因 本题前四个结论都与此有关 另外两个相反向量的和是一个零向量 不是实数零 最后一个结论可能忽视了 0的情况 正解 这六个命题都是错误的 因为对于 当b 0 a不一定与c平行 对于 当a b 0时 其方向任意 它与a b的方向都不相同 对于 当a b之一为零向量时结论不成立 对于 当a 0 且b 0 有无数个值 当a 0但b 0 不存在 对于 由于两个向量之和得到的仍是一个向量 所以对于 当 0时 不管a与b的大小与方向如何 都有 a b 此时不一定有a b 答案 评析 零向量的特殊性零向量是向量中最特殊的向量 规定零向量的长度为0 其方向是任意的 零向量与任意向量都共线 它在向量中的位置正如实数中0的位置一样 但有了它容易引起一些混淆 稍微考虑不到就会出错 考生应给予足够的重视 错源二错用实数运算律或运算法则 错解 a b c a b c 剖析 上述解法受实数运算律和运算法则的影响致错 答案 4 技法一数形结合思想 典例1 已知任意四边形abcd o为其内部一点 且满足试确定该点的位置 解题切入点 条件中涉及四个向量的和的问题 为了利用向量的加法法则 我们可把四个向量之和的问题 转化为向量两两相加的情形来解决 解 点o是四边形abcd对边中点连线的交点 证明如下 如图 以oa od为邻边作 aode 设oe与ad交于i 以ob oc为邻边作 bocf 设of与bc交于j 于是i j分别是ad与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论