




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
应用时间序列分析课程论文一 时间序列模型简介总结时间序列模型可以大致分为自回归过程模型和移动平均过程模型两大类。前者以其滞后变量为依据,推算其未来值,后者是以过去的误差项为依据,推算其未来值。有时需两者并用,便产生自回归移动平均模型。自回归模型(AR) 在AR模型中,序列的当前值由序列的当前值和序列的前一个长度为M的窗口内序列值决定。自回归过程是一个变量在时间的某一点的变化,相对于前期的变化是线性的。一般来说相关性随着时间呈指数下降,且在比较短的周期内消失。移动平均模型(MA) 这个式子说明序列的当前值由序列从当前值前推长度为N的窗口内序列值决定。在平均移动模型(MA)中,时间序列是一种未观测到的时间序列的平均移动的结果,如下: e 为一个独立同分布的随即变量,c 为常数,且 c 1。在平均移动参数c上的限制保证了过程是可以转换的。表明未来事件不太可能影响现在的事件,而且此过程是稳定的;对于e的限制,如同 AR 过程中的e,是一个具有零均值和方差为r 的独立同分布随机变量。已观测到的时间序列C 是未来观测到随机时间序列平均移动的结果。由于平均移动过程,所有过去和短期记忆的结果存在一个线性的依赖。自回归移动平均模型(ARMA)ARMA由AR和MA两个部分组成,形式如下: 在ARMA模型中,序列的当前值由序列的当前值从当前值前推长度为N的窗口内序列值以及序列的前一个长度为M的窗口内序列值一起决定。在自回归移动平均模型中,既存在自回归项,又有平均移动项: 此模型属于混合模型,称为 ARMA( p ,q)。p 为自回归项的个数,q为平均移动项的个数。对于一个 ARMA(2,0)过程,和 AR(2)一样,而一个 ARMA(0,2)过程又和 MA(2)一样,但是 ARMA 还是一个无记忆的过程。齐次非平稳模型(ARIMA)AR 和 ARMA 两个模型合并为一个更一般的过程,即齐次非平稳模型,也称为自回归集中移动平均模型。ARIMA 模型专门用于不稳定的时间序列,这些不稳定的过程在它们的均值和方差里,有一个不稳定的倾向,但是由于采用数据的累次差分,所以其结果是平稳的。例如,因为有了长期增长因素,价格序列就是不稳定的了,它可以任意无边界的增长,以至于使价格自身不再倾向平均值。但是有效市场假说能接受的是价格或者收入的变化是稳定的。而且,一般价格的变化是用百分比表示的。在这种情况下,可以用对数差分表示,这是一阶差分的情况,在一些序列里,高阶差分可以让数据稳定。假定是一个ARMA(p,q)过程,那么被认为是(p,d,q)阶的整合ARIMA,其中,p是自回归项的个数,q是平均移动项的个数,d 是所需差分化运算的次数。如果是一个ARIMA( p,d,0)过程,那么是一个AR(p)过程,同样,如果是一个ARIMA(0,d,q)过程,则是一个MA(0,q)。典型的ARIMA(p,d,q)模型考虑整数差分。二 实际运用举例在这里仅对ARMA模型进行一个简单的实际运用。现拟对中国的全体居民消费指数作预测分析,数据选取中国1978-2010全体居民的消费指数的年度数据(见表一),并以此为依据建立预测模型。中国全体居民消费指数(1978-2010)年份全体居民消费指数年份全体居民消费指数年份全体居民消费指数1978104.1198999.82000108.61979106.91990103.72001106.119801091991108.620021071981108.31992113.32003107.11982106.81993108.42004108.11983108.11994104.62005107.719841121995107.82006109.61985113.51996109.42007110.71986104.71997104.52008108.719871061998105.92009109.21988107.81999108.32010106.1表一(数据取自中国统计年鉴)1) 趋势分析在选择模型之前,首先对中国消费指数的时序图进行简单的趋势分析,然后再选择合适的模型进行定量分析,在该模型中以x表示全体居民的消费指数。图一(模型x的时序图)该图形表明,中国全体居民的消费指数呈现出轻微的波动性,基本上在100到114之间轻微的波动消费较平稳。从2000年开始缓慢上升,说明居民消这与中国较好较快的经济发展水平有关。从图中可以可能具有平稳性。所以需要进一步分析。了进一步确定数据的平稳性,我们进行单位根检验,得到如下图形图二(关于x的单位根检验)由图可知,检验t统计量值是-3.6616,小于显著性水平为1%的临界值,结果与定性分析一致,即中国全体居民消费指数呈现趋势性也就是平稳性。2)模型识别为了使模型更加精确,我们对x进行一阶差分,并得到它的自相关和偏自相关系数图(见图三)图三(x一阶差分后的自相关和偏自相关系数)从图三的自相关和偏自相关分析图可知,序列的样本自相关系数呈衰减正弦波趋向于零,呈现为拖尾性;而偏自相关系数中除滞后二期的骗子相关系数显著于0外,其余各值均在0附近较小波动,呈现截尾性,初步判定该模型为AR(2)模型,所以不妨对该序列建立ARMA(1,1),ARMA(1,2)等模型。3) 模型的估计及检验运用最小二乘估计,对一阶差分后的数据进行AR(1),AR(2),ARMA(1,1),ARMA(1,2)拟和估计图四(AR(1)模型估计)图五(ARMA(1,1)模型估计)最终可以得出只有在ARMA(1,1)中,它的R-squared和Adjusted R-squated较大,其值分别为0.60567和0.592,说明你和效果较好。且该模型中的p值为0.0001显著小于0.05,DW值为2.074显著接近于2,代表残差序列不存在自相关性,拟和效果良好.根据这些判断,我们可以认为ARMA(1,1)你和效果比较理想,因此最终选择ARMA(1,1)模型来拟合该模型,对他进行描述,模型形式为:, 4) 模型的预测通过以上估计及检验我们已经求的较为理想的模型,而且它也符合实际意义。通过预测可以得到通过模型预测可以得出2011年的中国全体居民消费指数为106.4,这与实际值106.8相差不大,同理可以预测2012年的中国全体居民的消费指数为107.3,这对预测中国未来经济的发展
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025廉洁教育体系建设与实施路径
- 2022年专题活动竞赛模拟卷(含答案)
- 2022年中考语文成语专项复习试题(含答案)
- 2025年全省党员干部《准则》《条例》网络测试题库及答案
- 《医学英语视听说第二版》课件unit8
- 中班幼儿肚脐健康保护教案
- 肿瘤标志物五项临床应用与解读
- 2025年工业设计与用户体验能力测试试卷及答案
- 钢筋工知识培训
- 控烟劝阻技巧知识培训
- 小学信息技术五年级上册第3课《流程图描述算法》教学设计
- 市政工程计量表格样表
- 职业院校教师人工智能素养:内涵流变、框架构建与生成路径
- 封装车间预防错漏混报告
- 2024年教师招聘考试教育综合理论知识复习题库及答案(共600题)
- GB/T 12412-2024牦牛绒
- 专项10:现代文阅读 媒体文阅读(练习)-【中职专用】2025年对口升学语文二轮专项突破(解析版)
- 产品检验知识培训课件
- 大数据完整题库500题(含参考答案)
- 精益生产精益知识宣传手册
- 西藏拉萨市(2024年-2025年小学五年级语文)统编版专题练习(下学期)试卷及答案
评论
0/150
提交评论