1.6函数的连续1.doc_第1页
1.6函数的连续1.doc_第2页
1.6函数的连续1.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六节 函数的连续性 教学目的:使学生理解函数连续性的概念(含左连续与右连续),会判断函数间断点的类型。教学重点:分段函数在分界点处的连续性教学过程:一、讲解新课一、 函数的连续性连续性是函数的重要性态之一,在实际问题中普遍存在连续性问题,从图形上看,函数的图象连绵不断。在数学上,我们有:定义 1:设在的某邻域内有定义,若,就称函数在 点处连续注 1:在点连续,不仅要求在点有意义,存在,而且要,即极限值等于函数值。 2:若,就称在点左连续。若,就称在点右连续。 3:如果在区间上的每一点处都连续,就称在上连续;并称为上的连续函数;若包含端点,那么在左端点连续是指右连续,在右端点连续是指左连续。定义1:设在的某邻域内有定义,若对,当时,有,就称在点连续。 下面再给出连续性定义的另一种形式:先介绍增量:变量由初值变到终值,终值与初值的差称为的增量,记为,即;可正、可负、也可为零,这些取决于与的大小。 我们称为自变量在点的增量,记为,即或;相应函数值差,称为函数在点的增量,记为,即,即或,。定义1:设在的某邻域内有定义,若当时,有,即,或,就称在点连续。定理:在点连续在点既左连续,又右连续。【例1】 多项式函数在上是连续的;所以,有理函数在分母不等于零的点处是连续的,即在定义域内是连续的。【例2】不难证明在上是连续的。【例3】证明在点连续。证明:,又,所以由定理 在点连续; ,所以 在点连续。【例4】讨论函数 在的连续性。解: ,因为,所以该函数在点不连续,又因为,所以为右连续函数。二、间断点 简单地说,若在点不连续,就称为的间断点,或不连续点,为方便起见,在此要求的任一邻域均含有的定义域中非的点。间断点有下列三种情况:(1)在没有定义;(2)不存在;(3)虽然不存在,也虽然在点有定义,但。种常见的间断点类型:【例5】设,当,即极限不存在,所以为的间断点。因为,所以为无穷间断点。【例6】在点无定义,且当时,函数值在与之间无限次地振荡,而不超于某一定数,见书上图,这种间断点称为振荡间断点。1. 均为振荡间断点。2、 不连续,连续。【例7】 在点无定义,所以为其间断点,又,所以若补充定义,那么函数在点就连续了。故这种间断点称为可去间断点。【例8】 例4的函数在点不连续,但左、右极限均存在,且有不等于的,这种间断点称为跳跃间断点。例如在处即为跳跃间断点。归纳:(1),为无穷间断点; (2)震荡不存在,为震荡间断点; (3),为可去间断点; (4),为跳跃间断点。 如果在间断点处的左右极限都存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论