




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十节 一 最值定理 二 介值定理 三 一致连续性 闭区间上连续函数的性质 第一章 注意 若函数在开区间上连续 结论不一定成立 一 最值定理 定理1 在闭区间上连续的函数 即 设 则 使 值和最小值 或在闭区间内有间断 在该区间上一定有最大 证明略 点 例如 无最大值和最小值 也无最大值和最小值 又如 二 介值定理 由定理1可知有 证 设 上有界 定理2 零点定理 至少有一点 且 使 证明略 推论在闭区间上连续的函数在该区间上有界 定理3 介值定理 设 且 则对A与B之间的任一数C 一点 证 作辅助函数 则 且 故由零点定理知 至少有一点 使 即 推论 在闭区间上的连续函数 使 至少有 必取得介于最小值与 最大值之间的任何值 例 证明方程 一个根 证 显然 又 故据零点定理 至少存在一点 使 即 说明 内必有方程的根 取 的中点 内必有方程的根 可用此法求近似根 二分法 在区间 内至少有 则 则 内容小结 三 一致连续性 已知函数 在区间I上连续 即 一般情形 就引出 了一致连续的概念 定义 对任意的 都有 在I上一致连续 显然 例如 但不一致连续 因为 取点 则 可以任意小 但 这说明 在 0 1 上不一致连续 定理4 上一致连续 证明略 思考 P74题 7 提示 设 存在 作辅助函数 显然 内容小结 在 上达到最大值与最小值 上可取最大与最小值之间的任何值 4 当 时 使 必存在 上有界 在 在 1 任给一张面积为A的纸片 如图 证明必可将它 思考与练习 一刀剪为面积相等的两片 提示 建立坐标系如图 则面积函数 因 故由介值定理可知 则 证明至少存在 使 提示 令 则 易证 2 设 作业P74 习题1 10 2 3 5 一点 习题课 备用题 至少有一个不超过4的 证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西壮族自治区柳州市2025年七年级下学期语文期末试卷及答案
- 2025年中考历史单选与多选分类复习题集及答案(原创)
- 医学科研项目培训体系构建
- 城市交通规划案例研究重点基础知识点
- 教师移动端备课实施路径
- 建筑施工资料员培训课件:提升工程档案管理技能
- 《当代企业创新策略》课件
- 轮岗培训工作汇报
- 医学检验重点专科建设汇报
- 火化合伙协议书
- 湖南省天壹名校联盟2025届高三5月适应性考试(化学)
- 浙江省杭州地区(含周边)重点中学2024-2025学年高一下学期期中考试化学试卷(含答案)
- 房地产广告效果的评测与分析
- 2025年北京市石景山区九年级初三一模语文试卷(含答案)
- 华大新高考联盟2025届高三4月教学质量测评历史+答案
- T-CASEI 015-2023叉车使用安全管理规范
- 2025年人教版九年级中考道法社会热点专题 热点七 《黑神话:悟空》
- 2025年浙江省温州市中考一模语文试题(含答案)
- GB/T 12385-2025管法兰用垫片密封性能试验方法
- 2024年7月27日内蒙古阿拉善盟直机关遴选笔试真题及解析
- 穴位埋线疗法疗法
评论
0/150
提交评论