亚硝酸型生物脱氮技术.doc_第1页
亚硝酸型生物脱氮技术.doc_第2页
亚硝酸型生物脱氮技术.doc_第3页
亚硝酸型生物脱氮技术.doc_第4页
亚硝酸型生物脱氮技术.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

亚硝酸型生物脱氮技术 0引言 生活污水及某些工业废水中都含有一定的氮,特别是某些工业废水,如煤加压气化废水、焦化废水、氮肥废水等。大量的氮排入水体后易造成水体富营养化。由于常规活性污泥法是以除碳为目的,通过微生物同化去除生活污水中的氮量很少,通常只有10%13%。因此,对生活污水和含氮的工业废水,采用常规的活性污泥法处理,出水中仍含有大量的氮和磷。这就促使人们对常规活性污泥工艺流程进行改造,以提高氮、磷的去除率。最具有代表性的就是A/O法、A2/O法等工艺,这些工艺在废水除磷脱氮方面起到了一定的作用,但仍然存在着许多问题,如硝化菌群增殖速度慢,且硝化菌世代长,难以维持较高生物浓度,因此造成系统总水力停留时间较长,有机负荷较低,增加了基建投资和运行费用。另外,为中和硝化过程产生的酸度,需要加碱中和,增加了处理费;氨氮完全硝化,需要大量的氧,使动力费用增加等。最近的一些研究表明,生物脱氮过程中出现了一些超出人们传统认识的新现象,这些现象的发现为水处理工作者设计处理工艺提供了新的理论和思路,其中亚硝酸型生物脱氮技术颇受重视,具有较高的应用价值。1亚硝酸型生物脱氮原理 长期以来,无论是在废水生物脱氮理论上还是在工程实践中,都一直认为要实现废水生物脱氮就必须使NH3N经历典型的硝化和反硝化过程才能完全被除去。传统生物脱氮之所以要将氨氮完全氧化成硝酸后再进行反硝化,主要基于以下几个方面原因:如果硝化不完全,形成的亚硝化产物HNO2是三致物质,对受纳水体和人是不安全的,所以尽量避免出现HNO2;HNO2具有一定耗氧性,影响出水COD和受纳水体DO;氨在自然生物氧化过程中,NH3NNO2-N,可释放242.8351.7kJ/mol的能量,亚硝酸菌从中获取5%14%能量;氧化NO2-NNO3-N释放能量为64.587.5kJ/mol,硝酸菌可利用其中5% 10%,硝酸菌氧化NO2-的量必须达到亚硝酸菌氧化NH3N量的45倍,因而在稳态下,一般不会有HNO2积累,氨会被氧化成硝酸;亚硝酸菌和硝酸菌是两类独立细菌,但在开放体系中,这两类菌普遍存在,并生活在一起,彼此有利,因此难以单独存在;氨氧化为亚硝酸的速率较亚硝酸氧化为硝酸速率快,在NH3NNO3-N中,亚硝酸的形成是限速步骤,所以通常硝化产物为硝酸,亚硝酸浓度很低。 实际上从氮的微生物转化过程来看,氨被氧化成硝酸是由两类独立的细菌催化完成的两个不同反应,应该可以分开。这两类细菌的特征也有明显的差异。对于反硝化菌,无论是NO2-N 还是NO3-N均可以作为最终受氢体,因而整个生物脱氮过程可以通过 NH3NNO2-NN2这样的途径完成。所谓亚硝酸型生物脱氮就是将硝化过程控制在HNO2阶段而终止,随后进行反硝化。亚硝酸菌世代周期比硝酸菌世代周期短,泥龄也短,控制在亚硝酸型阶段易提高微生物浓度和硝化反应速度,缩短硝化反应时间,从而可以减小反应器容积,节省基建投资。另一方面,从亚硝酸菌的生物氧化反应可以看到,控制在亚硝酸型阶段可节省氧化NO2-N为NO3-N的氧量。此外,从反硝化的角度来看,从NO3-N还原到N2比从NO2-N 还原到N2需要的氢供体多。因此,亚硝酸型生物脱氮的技术与传统的生物脱氮技术相比具有以下特点。 (1)在NH3NNO2-NNO3-N的一连串的硝化反应中,限制因子是亚硝化单胞菌属增长速度,而且为了维持亚硝酸型的硝化方式所需要的pH值范围大致是7.88.8。在这一范围内,亚硝化单胞菌属的增长速度较维持硝酸化方式所必须的pH值6.87.8范围内的增长速度大。为完成硝化作用所需要的极限污泥负荷范围也大。 (2)对流入硝化反应器的NH3N进行生物氧化时,把NH3N氧化到NO2-N为止,较氧化成NO3N为止更能节省能源。 (3)亚硝酸型脱氮方式中,在脱氮反应初期便存在着来自NO2-N的阻碍作用的一段停滞期,但尽管包括这个停滞期在内,NO2-N的还原速度仍然较NO3-N的还原速度大。 (4)在亚硝酸型脱氮方式中,作为脱氮菌所必须的氢供体,即有机碳源的需要量较硝酸型脱氮减少50%左右。2实现亚硝酸型生物脱氮的途径 控制硝化停止在HNO2阶段是实现亚硝酸型生物脱氮技术的关键,硝化反应的控制在一定程度上取决于对两种硝化细菌的控制,亚硝酸细菌和硝酸细菌在生理机制及动力学特征上存在固有的差异,导致某些影响因素对其存在不同程度的抑制作用,从而影响硝化形式。由此可以看到,实现亚硝酸型生物脱氮的途径就是控制那些能对硝酸菌和亚硝酸菌两种不同的硝化细菌产生不同影响作用的微生物生命活动影响因素。2.1控制温度 生物硝化反应在445内均可进行,适宜温度为2030,一般低于15硝化速率降低。1214下活性污泥中硝酸菌活性受到严重的抑制,出现HNO2积累。1530范围内,硝化过程形成的亚硝酸可完全被氧化成硝酸。温度超过30后又出现HNO2积累。因此,控制硝化阶段温度在低温或较高温度时,硝化产物主要是亚硝酸。2.2控制溶解氧浓度 亚硝酸菌和硝酸菌均是绝对好氧菌,在生物膜和活性污泥反应器中,当膜的厚度和污泥颗粒的尺度较大时,形成对氧扩散梯度。一般认为至少应使溶解氧浓度在0.5mg/L以上时才能很好地进行硝化作用,否则硝化作用会受到抑制。降低硝化阶段溶解氧浓度对氨氧化影响不大,笔者在采用低氧、好氧曝气接触氧化三级生物法处理煤加压气化废水研究中,在低氧曝气池中,氨的氧化率达85%以上;降低溶解氧浓度,对亚硝酸进一步氧化成硝酸有明显的阻碍,并产生亚硝酸积累。2.3控制pH值 pH是亚硝酸硝化的一个决定因素,最近研究表明,当pH值为7.48.3时,亚硝酸盐积累速率达到很高;NO2-N生成速度在pH值8.0附近达到最大;而NO3-N生成速度在 pH值7.0附近达到最大。所以在混合体系中亚硝酸菌和硝酸菌的最适宜pH值分别为8和7附近。利用亚硝酸菌和硝酸菌的最适宜pH值的不同,控制混合液中pH值就能控制硝化类型及硝化产物。试验表明,pH值7.4时亚硝酸盐氮所占比率高于90%,亚硝酸型硝化要求pH值必须控制在7.48.3之间。2.4控制NH3浓度与氮负荷 废水中氨随pH值不同分别以分子态和离子态形式存在。分子态游离氨(FA)对硝化作用有明显的抑制作用,硝化杆菌属比亚硝化单胞菌属更易受到FA的抑制,0.6mg/L的FA几乎就可以全部抑制硝酸菌的活性,从而使HNO2氧化受阻,出现HNO2积累。只有当FA达到5mg/L以上才会对亚硝酸菌活性产生影响,当达到40mg/L,才会严重抑制亚硝酸的形成。所以,当废水中NH3浓度较高,pH值偏于碱性时,易形成亚硝酸型硝化,在相反的条件下,则形成硝酸型硝化的倾向很大。另外氨氮负荷过高时,在系统进行初期有利于繁殖较快的亚硝酸菌增长,使亚硝酸产生量大于氧化量而出现积累。2.5控制泥龄 泥龄是表示活性污泥在曝气池内平均停留时间,也反映了曝气池中污泥全部更新一次需要的时间。由于亚硝酸菌的世代周期比硝酸菌世代周期短,在悬浮处理系统中,若泥龄介于亚硝酸菌和硝酸菌的最小停留时间之间时,系统中硝酸菌会逐渐被冲洗掉,使亚硝酸菌成为系统优势硝化菌,形成亚硝酸型硝化。3亚硝酸型生物脱氮典型工艺3.1SHARON工艺 SHARON工艺是由荷兰Delft技术大学开发的脱氮新工艺。其基本原理是将氨氧化控制在亚硝化阶段,然后进行反硝化。用SHARON工艺来处理城市污水二级处理系统中污泥消化上清液和垃圾滤出液等高氨废水,可使硝化系统中亚硝酸积累达100%。该工艺的核心是应用了硝酸菌和亚硝酸菌的不同生长速率,即在高温(3035)下,亚硝酸菌的生长速率明显高于硝酸菌的生长速率,亚硝酸菌的最小停留时间小于硝酸菌这一固有特性控制系统的水力停留时间,使其介于硝酸菌和亚硝酸菌最小停留时间之间,从而使亚硝酸菌具有较高的浓度而硝酸菌被自然淘汰,从而维持了稳定的亚硝酸积累。在SHARON工艺中,温度和pH值受到严格控制。利用此专利工艺的两座废水生物脱氮处理厂已在荷兰建成,并证明了亚硝酸型生物脱氮技术的可行性。3.2OLAND工艺 OLAND工艺是由比利时Gent微生物生态实验室开发。该工艺的技术关键是控制溶解氧浓度,使硝化过程仅进行到NH3N氧化为NO2-N阶段。溶解氧浓度是硝化与反硝化过程中的重要因素,研究表明低溶解氧下亚硝酸菌增殖速率加快,补偿了由于低氧所造成的代谢活动下降,使得整个硝化阶段中氨氧化未受到明显影响。低氧下亚硝酸大量积累是由于亚硝酸菌对溶解氧的亲合力较硝酸菌强。亚硝酸菌氧饱和常数一般为0.20.4mg/L,硝酸菌的为1.21.5mg/L。OLAND工艺就是利用这两类菌动力学特性的差异,实现了淘汰硝酸菌,使亚硝酸大量积累。4结语 氮污染对水体危害的严重性被越来越多的人们所认识,发达国家很早就在污水处理中考虑了除氮功能。我国由于经济原因,起步较晚,在1998年实施的污水排放标准中,对氮的排放量提出了更严格的要求。亚硝酸型生物脱氮技术,由于具有降低能耗、节省碳源、减少污泥生成量、反应器容积小及占地面积省等优点,受到了人们普遍关注。亚硝酸型生物脱氮技术的核心是将硝化过程控制在亚硝酸阶段,随后进行反硝化。通常利用亚硝酸菌和硝酸菌动力学特性固有差异,采用控制温度、溶解氧浓度、pH值、氨负荷及泥龄等对两类菌生长产生不同影响的微生物生命影响因素来实现。从上述两个工艺来看,实现亚硝酸型生物脱氮技术是可行的。但是由于废水的复杂性和污染物质的多样性,以及各个控制因素之间的相互关联等原因,作者认为以后仍然需要着重进行如下几个方面的研究。 (1)SHARON工艺主要用来处理城市污水二级处理系统中污泥硝化上清液和垃圾滤出液等废水,由于这些废水本身温度较高,属高氨高温水。但对于大量的城市污水来说,一般属于低温低氨污水,要使大量水升温、保温在3035难以实现。因此,对低温低氨的城市污水如何实现亚硝酸型硝化值得进一步的研究。 (2)OLAND工艺是在低氧浓度下实现维持亚硝酸积累,但是对悬浮系统低氧下活性污泥易解体和发生丝状膨胀。因此低氧对活性污泥的沉降性、污泥膨胀、以及对除氮以外的其它污染物质去除效果的影响等仍值得进一步的研究。 (3)虽然很多因素会导致硝化过程中亚硝酸积累,但目前对此现象的理论的解释还不充分。各种控制因素之间都是相互关联的,如温度、pH值、DO、氨浓度等的变化都会引起亚硝酸菌和硝酸菌增长速度的变化,进而引起其最小停留时间的改变。因此,根据各种废水的水质特点寻找其主要控制因素,或者如何综合考虑各种控制因素,综合控制硝化过程,使亚硝酸的积累能长久稳定地维持还需要进一步的研究与探索。 亚硝酸型硝化的控制途径 在简捷硝化反硝化的两个主要反应步骤中,反硝化技术容易控制实现,因此硝化过程中稳定持久的获得NO2-N成为技术关键,实现硝化出水NO2-N高比例的控制技术也成为研究重点。目前能在一定时间内控制硝化处于亚硝酸阶段的途径有四种:亚硝酸细菌 的纯种分离与固定化技术;控制温度造成不同增长速率形成“分选压力”的SHARON途径;游离氨抑制硝酸细菌增长的选择性抑制途径;控制硝化细菌基质造成两类细菌增长速率 不同的氧缺乏竞争途径。 1 纯种分离与固定化技术途径该途径的机理是利用纯种分离后富集培养的亚硝酸细菌固定化,从而维持反应器内菌群为纯亚硝酸细菌或以亚硝酸细菌为主体,从而实现硝化出水中NO2-N的高比例。利用固定化微生物技术强化生物脱氮是近10年来生物脱氮领域研究的热点之一,利用固定化载体海藻酸钠和聚乙烯醇(PVA)等将亚硝酸细菌包埋后固定化,装于特别设计的反应器内,可以实现稳定的亚硝酸型硝化,在与反硝化细菌混合包埋固定化的条件下可以实现同步硝化反硝化,日本已出现了处理能力为11300m3/d的工业化装置1。亚硝酸细菌纯种分离后固定化可以获得稳定的NO2-N积累,在技术实践中取得了一定成功,但该技术存在因固定化细菌退化使硝化能力下降的问题,固定化细菌反应器经过一定时间的运行后需进行固定化细菌的替换或活化。针对复杂的废水体系,解决经纯种分离后富集培养的亚硝酸细菌对实际高氨废水的适应性问题的关键是对采用混合菌还是单一高效菌分级处理进行优化,同时降低固定化载体的成本并提高其使用寿命。2 SHARON 工艺途径SHARON工艺2的理论基础是在高温条件下(25),亚硝酸细菌的增长速率高于硝酸细菌,完全混合反应器不进行污泥回流,因而污泥停留时间(SRT)等同于水力停 留时间(HRT),控制HRT大于亚硝酸细菌的世代时间,小于硝酸细菌的世代时间,实现硝酸细菌的“淘洗”,使反应器内主要为亚硝酸细菌。该工艺的本质是通过控制环境温度造成 两类细菌不同的增长速率,利用该动力学参数的不同造成“分选压力”。此外,文献中也强调了pH值对两类细菌竞争的影响,认为除了温度外,pH值对于亚硝酸细菌与硝酸细菌的竞争 以及获得出水中较低的NH4+-N浓度也非常重要。SHARON工艺的成功在于:利用了温度这一重要因素,提高了亚硝酸细菌的竞争能力;利用完全混合反应器在无污泥回流条件下SRT与HRT的同一性,控制HRT实现硝酸细菌的“淘洗”;实现对pH值的成功控制,较高的pH值不仅抑制了硝酸细菌,也消除了自由亚硝酸(FNA)对亚硝酸细菌的抑制。该工艺的成功运行表明,亚硝酸型硝化控制因子的探讨是一个系统工程,任何一个控制因子的确定除了要明确它本身会对两类硝化细菌的动力学特性产生何种影响外,还要将其他影响因素控制在有利于亚硝酸细菌的范围内。如考察温度的影响时应同时考虑因温度变化导致的游离氨浓度与pH值的变化对亚硝酸型硝化的影响。3 游离氨的选择性抑制途径抑制途径的机理是利用特定的抑制因子抑制硝酸细菌而对亚硝酸细菌不抑制或抑制作用较轻,从而使反应器内亚硝酸细菌占优势,实现出水NO2-N高比例。选择性抑制途径从根本上 讲是硝化基质(FA)浓度超过硝酸细菌的转化利用阈值,而低于亚硝酸细菌的转化利用阈值。其代表性理论是Anthonisen的选择性抑制学说。Anthonisen及后来国内外许多亚硝酸盐氮积累研究者发现3、4:游离氨对两类硝化细菌的抑制作用(毒性)不同,硝酸细菌对游离氨的敏感性要高于亚硝酸细菌,并就FA对两类细菌的抑制浓度阈值进行了研究,通过试验发现0.6mg/L的FA几乎就可以全部抑制硝酸菌的活性,从而使NO2-N的氧化受阻,出现NO2-N积累;而对亚硝酸菌只有当FA浓度5mg/L时才会对其活性产生影响,达到40mg/L才会严重抑制亚硝酸氮的形成。从这个结果出发的抑制选择性学说认为,通过调整pH值控制反应器内FA的浓度在抑制硝酸细 菌而不抑制亚硝酸细菌的阈值内,可以抑制硝酸细菌的增长而使亚硝酸细菌成为反应器内硝化反应主体,实现亚硝酸型硝化。为了阐明FA抑制的机理,Turk与Mavinic5精心设计了一套试验系统,该系统由5个串联的完全混合反应器构成以使系统内形成推流流态。第一个反应器的控制处于反硝化运行,pH值较高,FA浓度控制在抑制硝酸细菌而不抑制亚硝酸细菌的范围内;通过第一个反应器的活性污泥,其中硝酸细菌被认为受到抑制,因此在后续的反应器内应出现亚硝酸氮积累,试验结果却表明亚硝酸氮的积累并不稳定,分析原因是由于硝酸细菌能够逐渐适应不断升高的FA造成的。Alleman等也在试验中发现了试验时间超过150d后出现硝化出水中NO2-N比例下降的问题。由于对FA抑制选择学说的机理比较清楚,目前比较统一的认识是,对于高FA浓度,于变异与适应性的原因,硝酸细菌会逐渐适应高浓度FA,因而许多研究者在试验中发 现出水中NO2-N比例不稳定的情况,而这是作为控制因素必须避免的。4 Bernet的基质缺乏竞争途径Kuai6、Hanaki7、王志盈8等在研究中发现了在低DO的条件下反应器出水中NO2-N浓度上升的现象。许多研究者进行了利用控制DO实现亚 硝酸型硝化的研究。Bernet提出了基质缺乏竞争学说9,该学说的理论基础是两类硝化细菌对氧的亲和力不同,从亚硝酸细菌氧饱和常数低于硝酸细菌这一假设出发,证明了降低DO尤其是在DO1.0mg/L条件下对提高亚硝酸细菌的竞争力有利;受DO下降的影响,亚硝酸细菌与硝酸细菌的增长速率均下降,然而硝酸细菌的下降比亚硝酸细菌要快,导致亚硝酸细菌的增长速率超过硝酸细菌,使生物膜上的细菌以亚硝酸细菌为主体,出现亚硝酸盐氮积累。为了证明所提学说的正确性和DO作为亚硝酸型硝化控制因素的可行性,Bernet利用生物膜反应器进行了试验,试验过程分为完全硝化挂膜、一次降低DO、提高DO浓度、二次降低DO浓度等步骤,证明了在DO0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论