




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 3 2函数的奇偶性 观察下图 思考并讨论以下问题 1 这两个函数图象有什么共同特征吗 2 相应的两个函数值对应表是如何体现这些特征的 f 3 9 f 3 f 2 4 f 2 f 1 1 f 1 f 3 3 f 3 f 2 2 f 2 f 1 1 f 1 实际上 对于r内任意的一个x 都有f x x 2 x2 f x 这时我们称函数y x2为偶函数 1 偶函数 一般地 对于函数f x 的定义域内的任意一个x 都有f x f x 那么f x 就叫做偶函数 例如 函数都是偶函数 它们的图象分别如下图 1 2 所示 观察函数f x x和f x 1 x的图象 下图 你能发现两个函数图象有什么共同特征吗 f 3 3 f 3 f 2 2 f 2 f 1 1 f 1 实际上 对于r内任意的一个x 都有f x x f x 这时我们称函数y x为奇函数 f 3 1 3 f 3 f 2 1 2 f 2 f 1 1 f 1 2 奇函数 一般地 对于函数f x 的定义域内的任意一个x 都有f x f x 那么f x 就叫做奇函数 注意 1 函数是奇函数或是偶函数称为函数的奇偶性 函数的奇偶性是函数的整体性质 2 由函数的奇偶性定义可知 函数具有奇偶性的一个必要条件是 对于定义域内的任意一个x 则 x也一定是定义域内的一个自变量 即定义域关于原点对称 3 奇 偶函数定义的逆命题也成立 即若f x 为奇函数 则f x f x 有成立 若f x 为偶函数 则f x f x 有成立 4 如果一个函数f x 是奇函数或偶函数 那么我们就说函数f x 具有奇偶性 例5 判断下列函数的奇偶性 1 解 定义域为r f x x 4 f x 即f x f x f x 偶函数 2 解 定义域为rf x x 5 x5 f x 即f x f x f x 奇函数 3 解 定义域为 x x 0 f x x 1 x f x 即f x f x f x 奇函数 4 解 定义域为 x x 0 f x 1 x 2 f x 即f x f x f x 偶函数 3 用定义判断函数奇偶性的步骤 1 先求定义域 看是否关于原点对称 2 再判断f x f x 或f x f x 是否恒成立 课堂练习 判断下列函数的奇偶性 3 奇偶函数图象的性质 1 奇函数的图象关于原点对称 反过来 如果一个函数的图象关于原点对称 那么就称这个函数为奇函数 2 偶函数的图象关于y轴对称 反过来 如果一个函数的图象关于y轴对称 那么就称这个函数为偶函数 说明 奇偶函数图象的性质可用于 a 简化函数图象的画法 b 判断函数的奇偶性 例3 已知函数y f x 是偶函数 它在y轴右边的图象如下图 画出在y轴左边的图象 解 画法略 本课小结 1 两个定义 对于f x 定义域内的任意一个x 如果都有f x f x f x 为奇函数如果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025餐厅员工劳动合同协议书范本
- 2025厨房设备类建材购销合同(合同范本)
- 山西省吕梁地区文水县2026届八年级数学第一学期期末达标检测试题含解析
- 个人房屋装修合同集合15篇
- 2025知识产权许可及品牌形象授权代理合同
- 山东省诸城市2026届七年级数学第一学期期末预测试题含解析
- 2026届重庆市外国语学校数学七年级第一学期期末复习检测模拟试题含解析
- 简约原木风室内设计方案
- 农业温室中雁形板的定制生产及安装指南
- 2025医疗机构医用耗材采购销售合同模板
- JJF 1338-2012相控阵超声探伤仪校准规范
- GB/T 40529-2021船舶与海洋技术起货绞车
- GB 31603-2015食品安全国家标准食品接触材料及制品生产通用卫生规范
- 关于公布2016年度中国电力优质工程奖评审结果的通知
- 港口集团绩效考核方案
- 固体化学固体中的扩散
- 送达地址确认书(诉讼类范本)
- 经典企业商业融资计划书模板
- 2023版北京协和医院重症医学科诊疗常规
- 三坐标测量基础知识(基础教育)
- 宜家战略分析(课堂PPT)
评论
0/150
提交评论