资源目录
压缩包内文档预览:
编号:492066
类型:共享资源
大小:3.33MB
格式:ZIP
上传时间:2015-11-06
上传人:QQ28****1120
认证信息
个人认证
孙**(实名认证)
辽宁
IP属地:辽宁
30
积分
- 关 键 词:
-
机械毕业设计全套
- 资源描述:
-
JC01-136@超声波枪钻机床设计,机械毕业设计全套
- 内容简介:
-
目 录前 言2工 厂 简 介3一、焦作市博瑞克液压机械有限公司简介3二、河南焦矿机器有限公司简介4三、焦作市制动器有限公司简介4四、中轴集团公司简介5部 分 零 件 加 工 工 艺7一、铸态球铁曲轴制造工艺7二、凸轮轴制造工艺10三、M419活塞的加工工艺分析10结束语15 前 言 这次生产见习是我们参与实践活动的很重要的一部分,在老师的带领下我们见习了焦作制动器厂、中原轴件厂、焦做矿山机械厂、焦作博瑞克液压机械厂等5个工厂。可以说我们在这次实习中学到了很多在课堂没学到的知识,受益匪浅: 1.实习目的: 生产实习是我们机自专业知识结构中不可缺少的组成部分,并作为一个独立的项目列入专业教学计划中的。其目的在于通过实习使学生获得基本生产的感性知识,理论联系实际,扩大知识面;同时专业实习又是锻炼和培养学生业务能力及素质的重要渠道,培养当代大学生具有吃苦耐劳的精神,也是学生接触社会、了解产业状况、了解国情的一个重要途径,逐步实现由学生到社会的转变,培养我们初步担任技术工作的能力、初步了解企业管理的基本方法和技能;体验企业工作的内容和方法。这些实际知识,对我们学习后面的课程乃至以后的工作,都是十分必要的基础。 2.实习内容: 掌握机械加工工艺方面的知识及方法 了解切削刀具方面的知识,熟悉常用刀具的结构、选择、用途等 了解机床和数控系统的知识,特别是加工中心等典型的数控设备 了解企业生产管理模式,学习先进的管理方式方法 熟悉、巩固铸造工艺及设备方面的知识工 厂 简 介一、焦作市博瑞克液压机械有限公司简介焦作市博瑞克液压机械有限公司创建于1958年,是国家机械工业部确定的冶金设备用液压缸唯一定点生产厂家;国家液压缸行业标准起草,修定单位之一,宝钢设备配件研制中心成员单位之一;焦作市高新技术企业之一。2001年7月经国家经贸委批准“双高一优”项目,投资3000万元的冶金设备用液压缸易地经改项目已完成。并能够独立生产多种高难度非标油缸替代进口油缸,且CAD覆盖率达100。公司主要加工设备260台,其中投资额1200万元从美国西来公司引进目前世界上最先进的内孔加工设备刮削滚刀机,采用镗,滚压方法,一次装卡完成,使缸体内孔精度达IT8级,并具有压力自动补偿刀具,保证表面粗糙度始终如一。同时公司还用有先进的数控机床,卧镗铣床,多台深孔强力珩磨机床,深孔钻镗床,8米外园磨床,14米车床以及车削中心,数控加工中心和先进的综合性能实验台等完善的检测设备。 主要产品:1.重型冶金设备用液压缸(1)JB216291冶金设备用液压缸(2 JB/ZQ439596重型冶金设备用液压缸(3)CD250/CG250重型冶金设备用力士乐液压缸(4)YHG冶金设备标准液压缸(5)伺服压下缸(6)齿条压下油缸(7)带位移显示传感器液压缸2.HSG01工程用液压缸3标准系列气缸(1冶金设备用气缸JB1444144874(2)QG国际标准中型汽缸4.设计制造各种非标准液压缸,气缸以及液压泵站等产品 车床简介 焦作博瑞克液压厂投资1200万从美国西来公司进口的刮削滚光机,直接加工热轧钢管,一次向前走刀完成镗、刮、滚光三道工序,比普通镗床快15至80倍,刀具为压力自动补偿式,能保证加工粗糙度始终保持一致,并按需要自行调节,可编程序控制器监测机床运行情况。可迅速正确地指出任何故障。其加工范围:缸径为mm,长度4000mm。加工精度H8,之间选择。二、河南焦矿机器有限公司简介河南焦矿机器有限公司前身为焦作矿山机器股份有限公司,工厂始创于1949年。2005年9月,职工共同出次,买断国有净资产,完成了企业改制。 公司下设11个生产分厂,有各类加工设备600余台,其中大型、精密、稀有设备110多台,从铸、锻、铆、焊到加工、装配,形成完善的工艺手段和产品质量控制体系,已通过ISO9001质量体系认证,是一个具有相当规模和实力的重型机械制造企业。河南省中小矿山机械产品质量监督检验测试中心站设在该公司。 公司产品以破碎、粉磨设备为主导,主要有:年产30万吨及以上的水泥成套设备;用于火力发电机组的系列煤磨机;各种颚式、锤式、贺锥式破碎机;冶金用氧化球团设备;全套选矿设备;高低压电控制装置;电除尘、水污染处理环保设备等。公司还将着力于洁净煤生产设备、风力发电设备和大型精密铸造件的市场拓展,以满足更多不同行业的需求。三、焦作市制动器有限公司简介 焦作制动器有限公司拥有先进的工业设备,雄厚的技术实力,完备的检测手段,严格的质量管理体系,高素质的专业销售队伍,信誉至上的售后服务宗旨,是公司进入市场,赢得用户的有力保证。公司拥有高效的工程师3人,中级工程技术人员17人,技术人员25人,可为用户提供国际产品和非标产品的设计和制造。 公司生产的主要产品有:电力液压块式制动器、电力液压推动器、电力液压盘式制动器、电磁铁块式制动器、电磁盘式制动器等。公司生产的制动器型号多,品种齐全,产品畅销全国各地,应用于起重运输、冶金、矿山、港口、建筑等机械驱动装置的机械制动,具有结构紧凑,制动平稳,安全可靠,维修方便,耗电低,寿命长,无噪音,操作频率高等特点。公司产品首家通过国家建筑城建机械质量监督检测中心认证。四、中轴集团公司简介 中轴集团公司的核心企业中原轴件厂原本是一个小厂,后来由于大胆采用了节能节材的生产工艺,在市场竞争中赢得了主动,产品供不应求,急需扩大生产规模。当时原焦作市标准件厂北厂有20多亩厂区和2000平方米的厂房因生产不景气在闲置。1994年初,中原轴件厂对其实施了吸收式合并,迅速在其现成的厂房内建起了一条大型生产线,这样既保证了接收过来的原标准件厂职工有活干,也使企业的生产规模和经济实力迅速壮大。 1996年春节前夕,中原轴件厂整体收购了破产的原焦作市起重设备厂,2月7日宣布接收,2月8日该厂440名职工即得到妥善安置。为使下岗职工能早一天上岗,中原轴件厂的领导放弃休息,除夕夜带领工人在车间抹水泥,整修地面。经过28天的紧张奋战,原来破旧不堪的起重设备厂被改造成年产30万件齿轮轴的专业厂。当职工穿着新厂服参加新厂开工典礼时,不少重新上岗的职工激动得流下了热泪。一位老工人感慨地说:“中轴厂把这么好的设备安到我们这里,又有这么好的工作作风,我们真的有出路了。”当年,齿轮专业厂就创利320万元。 “职工的心是企业的根” 近几年来,中轴集团公司每进行一次大的改革行动和战略调整,都找职工座谈讨论,以期达到多数职工的理解和支持。去年,中轴集团公司先后在公司5个大的成员厂召开职工民主座谈会,每场座谈会均有300到500名职工参加,场面颇为壮观。座谈会上,对职工提出的问题,公司领导推心置腹,一一作答。5场座谈会下来,共有120余名职工发言,或提意见建议,或就企业的改革和发展发表看法。会后,公司又专门安排人调查研究,使职工所提的问题得到了圆满的解决。 厂务公开在中轴集团公司已实行多年。一次,公司工会主席尚致和到下面检查厂务公开情况,在一个生产车间听到有工人议论,说车间管理人员和辅助工太多,就是再减去一半也不会影响车间生产任务的完成。尚致和回来后,公司几个领导一通气,立即整改,近一半的管理人员和辅助工被减下来当了操作工,车间面貌焕然一新。 中轴集团公司从1998年开始划小核算单位,将原来的生产车间转化为模拟经营实体的专业厂,让专业厂直接面对市场,对市场信息作出快速灵敏的反应。经过一段时间的探索,中轴集团公司决定由公司纪检和工会出面,对本单位的财务、工资分配、招待费、通信费、劳保用品发放等每月审查一次,然后签名认可。一个专业厂的厂长克扣工人工资4000多元情况被查证落实后,公司对这名厂长及时作出了免除厂长职务、开除留用的处分。 其旗下的焦作中轴森特凸轮轴有限公司是专业研制和生产高档发动机凸轮轴的企业,注册资本2700万元,现有职工280人,其中高中级技术人员63人。公司引进德国CBN双磨头高线速数控凸轮型面磨削工艺和主轴径磨削工艺,采用美国凸轮轴检测仪及国产先进的数控凸轮轴加工设备,工艺装备水平国内一流。企业年产高档汽车发动机凸轮轴30万根,主要与广西玉柴、山东潍柴、一汽大柴、江苏锡柴等国内知名汽车发动机厂家配套河南中轴集团有限公司是轴类产品的生产基地,依靠H750、H1000、H1200系列楔横轧机,能轧制四缸、六缸、八缸等直径小于120MM,长度小于1200MM的多种钢制凸轮轴毛坯。 引进的德国、美国等国际最先进的凸轮轴磨削加工及检测设备,能同时满足不同用户对凸轮轴毛坯、半成品、成品的各种需求。 目前该公司凸轮轴同国内几大知名柴油机主机厂家直接配套,供货信誉良好。部 分 零 件 加 工 工 艺一、铸态球铁曲轴制造工艺1生产工艺设备和原材料的选用(1)熔炼使用3t/h热风双排大间距冲天炉(2)球化孕育处理采用堤坝包冲入法球化,包内孕育和随流孕育相结合的办法(3)造型使用国产金属型覆砂生产线#采用无冒口铸造,铁液利用率高,铸型精度高,刚度好(4)精选球铁用的生铁和铸造焦2球化孕育处理的材料选择和工艺控制 生产铸态珠光体球铁曲轴,主要是对球化和孕育处理工艺进行控制。2.1球化工艺的控制使用8-5型复合球化剂#在此基础上加入适量的合金元素,利用球化剂中的合金元素影响球铁的二次结晶,得到所需求的珠光体含量,阻碍铁素体的形成及石墨球周围牛眼状铁素体的形成,促进珠光体的形核和长大。球化剂的化学成分为:7%-9%Mg,4%6%Re,40%44%Si,适量的Cu、Sb、Bi、Ba、Ce。单一的合金元素不能满足高材质的综合性能要求,需采用多种微量合金元素复合合金化。其中Sb和Bi对球铁起双重作用,既促进石墨化,细化石墨,同时促进形成珠光体;用Ce和Sb配合稳定珠光体的同时,可改善石墨的圆整性并防止石墨畸变;Ba和Bi配合除促进石墨化外,还促进Si的孕育效果,能大量增加石墨球数,使石墨球更加细小、圆整,同时减少白口倾向;Cu细化稳定珠光体,确保获得综合力学性能更高的铸态球铁。以上微量元素相互配合,因侧重点不同,生产应用中主要体现其综合效果。2.2孕育工艺的控制采用多次孕育以改善基体组织和石墨的均匀性,有效地防止孕育衰退,达到细化晶粒组织,消除自由渗碳体,提高综合力学性能和切削加工性能的目的。孕育工艺,见表1。 生产铸态珠光体球铁,单靠炉前孕育,孕育的均匀性较差,在浇注后期极易产生孕育衰退,金相组织中石墨球粗大,数量少,渗碳体含量超标,严重恶化力学性能和切削加工性能。若进行二次随流孕育,可提高孕育的均匀性,改善孕育衰退现象,见表2。表2显示:二次孕育明显优于炉前一次孕育,金属基体组织中的石墨球更加细小且数量更多,珠光体含量稳定在85%以上,并消除自由渗碳体。 表3显示:铸态球铁硬度达到270HB,切削加工性能好,原因是铸态球铁工艺控制中孕育均匀,无偏析,自由渗碳体极少,在强度提高的情况下,伸长率也得到增加。总之,球化、孕育剂的加入量应根据原铁液的品质和化学成分以及孕育效果进行调整。3熔炼控制 获得优质的铸态珠光体球铁,球化和孕育工艺只是各工艺控制中的一个环节,原铁液的品质也是一个重要前提,它需要一个有效运作的质量保证体系来保证。严把炉料配料及熔炼操作,炉况稳定,保证原铁液化学成分准确,合适的过热度,严格控制炉渣中FeO的含量,减少铁液的含气量和非金属夹杂物的含量,从而改善铁液的品质和化学成分的准确性。 表4显示:原铁液的碳当量CE含量为4.0%4.3%之间,CE低铁液的过冷倾向大,孕育效果好;Mn高增加缩松倾向,产生一次渗碳体恶化力学性能,因此不用高Mn促进形成珠光体,而采用球化剂中的其他合金元素保证珠光体;P、S是有害元素,越低越好;处理后的铁液碳当量CE含量为4.3%-4.6%之间,此时铁液的流动性最好,凝固时体积膨胀量大,可实现自补缩和无冒口铸造,特别适合金属型覆膜砂铸造,获得组织致密、表面光洁度高的铸件。控制镁和稀土的残留量,主要是保证球化良好的前提下不衰退,同时要求,否则对石墨的圆整性不利,其偏析是晶界致脆和反白的根源。另外,要求,避免球化衰退和保证石墨球的圆整性。表5为部分炉次的化学及力学性能。只要满足以上条件,就可以生产出合格的曲轴。二、凸轮轴制造工艺 凸轮轴加工工艺包括粗加工、半精交加工和精加工,起工艺流程如下:毛胚-毛胚检查-铣两端面、钻中心孔、车轴颈-粗磨轴颈-钻油道孔、扩、绞球座孔、扩螺纹底孔、攻丝、倒角、钻轴颈油孔-粗磨凸轮-清洗-凸轮表面淬火-校直-精磨轴颈-精磨凸轮-磁粉探伤-精车止推面-磷化-抛光轴颈和止推面-清洗-检测轴颈及跳动-压装钢球及定位销。三、M419活塞的加工工艺分析1 M419活塞结构M4 19 活 塞结构如图1所示。该活塞采用LD8铝铜合金材料锻造,它由顶部、头部、裙部三部分组成。头部呈圆锥体,裙部呈椭圆,顶部为形;头部有三道环槽,上面两道安装气环,下面一道安装油环;油环底部分布着两排回油孔,油槽下面还有一排油孔;活塞头部从上至下呈圆锥体,裙部呈椭圆,内腔复杂,壁厚不均匀。2 加工定位基准选择M4 19 活 塞销孔加工采用专用锉床,其他部位加工用通用机床,配以专用工夹量具。由于活塞内腔形状复杂、厚度不匀、径向刚性差,每道工序都要产生夹紧变形而影响精度,因此制订工艺时必须充分考虑活塞的结构特点和精度要求。活 塞 的 整个加工过程分粗、精加工两个阶段,这对容易变形的活塞尤为重要。55#工序(精定位的修整)前为粗加工,主要包括止口、外圆、顶面及铣床工序;为避免精加工表面受损伤,主要表面,如外圆、环槽、活塞销孔表面的精加工放在55#工序后进行。2.1 精基准选择由于 活 塞 销孔轴线与裙部外圆轴线垂直且对称、活塞环槽两侧面与裙部外圆轴线垂直等,故理论上可以用裙部外圆作为定位基准,但生产中选用裙部止口(中164舒哟作为统一的加工定位基准,其优点为:a. 以 其 作为加工裙部、头部、顶面和销孔等主要表面的统一定位基准,有利于保证它们的相互位置;b. 采 用 外圆定位时,由于活塞内腔壁厚不均,夹紧外圆必然会使活塞变形。采用裙部止口定位、轴向压紧,可减小变形,从而有力保证活塞各结构尺寸;c. 使 用 方便。当所要加工的活塞品种改变时,只需更换止口定位原件即可。2.2 粗基准的选择由于 活 塞 内腔表面是不加工的,而活塞零件要求内腔表面相对外形表面保持相同壁厚,所以必须进行粗基准的选择,否则活塞重量会产生相对其轴线的不对称,影响工作平稳性。加工 方 案 最终采用以内腔为粗基准,目的是为了保证壁厚均匀,同时用内腔底面定位,以保证止口端面尺寸。其加工定位如图202.3 精基准的修整在 55 #工 序进行。2.4 其它基准使用以销 孔 作 为 辅 助基准。3 活塞加工的主要工序分析本点活塞外圆 、环槽和销孔的精加工是活塞加工中的三道主要工序。3.1 外圆精加工M4 19 活 塞的横截面为椭圆曲线,纵向带有锥度,其外圆的精加工除了要获得规定的尺寸、形状和表面粗糙度外,还需要提高与止口的同轴度。这一精加工工序包括:a. 靠 模 车削以活塞的下端面和止口定位,沿轴线压紧,采用锥度靠模,由刀架上的指针控制刀具的运动轨迹,以实现活塞锥度的加工;b. 活 塞 偏心切削为了切削出横截面为椭圆的活塞外形,采用专用车夹具,夹具以活塞的下端面、止口及活塞销孔定位,沿活塞轴线压紧,使活塞的旋转中心与车床主轴的旋转中心偏移0.6土0.lm ,安装好零件,车一侧椭圆,将零件回转180。重新安装,车另一侧椭圆,两次车削,加工活塞外圆的椭圆度。3.2 环槽精加工方法 如 图 3,在前后刀架上分别装上两组切槽刀,以进行半精加工和精加工,环槽的宽度和槽间距离,决定于切槽刀的宽度和夹板的厚度。为了提高槽宽和槽间距的精度,切槽刀和夹板的两侧面均需经过磨削,其厚度尺寸公差应限制在0.00 50.Ol mm,为了保证环槽侧面与裙部轴线垂直,切槽刀应与活塞裙部轴线垂直,也就是要使刀架上装夹刀具的基准面与机床主轴轴线垂直。这可在装夹刀具前用千分表找正,使其误差不超过0.O lmm。切槽刀刃口的表面粗糙度对环槽侧面的表面粗糙度影响很大,因此要求刃口表面粗糙度Ra为0.2 um,并需经过研磨。切削液采用煤油和柴油的混合液。 M419柴油机在实验过程中,其活塞裙部油槽曾出现疲劳裂纹。为提高M419活塞裙部油槽强度,油槽底部的加工改用滚压工艺。按要求,活塞油槽宽度应为,表面粗糙度应为,须在处实施滚压。加工油槽时,粗、精加工一次完成,先用一粗车刀进行粗加工,然后再用一精车刀进行精加工。精车刀的选用非常重要,既要保证尺寸精度,同时又要保证表面粗糙度。采用整体切槽刀具,材料选用高速钢,刀具前角为,以便排屑更顺畅。在加工中为了保证两槽的平行度,采用反切法。车刀反装,工件反转,这样可使工件重力和刀的切削力保持一致,不易引起振动;此外,切屑又不易嵌在槽中,可提高表面粗糙度质量。宽度尺寸由切槽刀保证。在完成槽的精加工后,下一道工序就是进行滚压,此工序在车床上进行,选用特定转速保持设定的力对槽进行滚压。3.3 销孔精加工为 了保 证 活塞与连杆的连接状况良好和发动机的正常运转,对活塞销孔提出了很高的技术要求,即销孔的精度等级为IT6级,表面粗糙度Ra为0.8,圆度为0.005.销孔精铿工序是在金刚石幢床上进行的,机床主轴采用静压轴承,刚性好,回转精度高,转速达到2500转每分钝为了保证锉杆运转的平稳,在锁杆内加入平衡块,以达到较高的加工精度。精幢销孔,选用活塞端面和止口及活塞销孔作为定位基准。销孔轴线与顶面的距离尺寸,通过尺寸链的计算加以保证。为减小夹紧变形,压住活塞的顶面来保证加工精度。按上 述 工 艺试加工50件活塞,其各项尺寸均达到了图纸要求。活塞的主要尺寸公差示于下表。结束语为期两周的实习结束了,在这期间我们总共在五个单位进行参观实习,在老师和工厂技术人员的带领下看到了很多也学到了很多。让我对原先在课本上许多不很明白的东西在实践观察中有了新的领悟和认识。在这个科技时代中,高技术产品品种类繁多,生产工艺、生产流程也各不相同,但不管何种产品,从原料加工到制成产品都是遵循一定的生产原理,通过一些主要设备及工艺流程来完成的。因此,在专业实习过程中,首先要了解其生产原理,弄清生产的工艺流程和主要设备的构造及操作。其次,在专业人员指导下,通过实习过程见习产品的设计、生产及开发等环节,初步培养我们得知识运用能力。概括起来有以下几方面:1.了解了当代机械工业的发展概况,生产目的、生产程序及产品供求情况。2.了解了机械产品生产方法和技术路线的选择,工艺条件的确定以及流程的编制原则。3.了解了机械产品的质量标准、技术规格、包装和使用要求。4.在企业员工的指导下,见习生产流程及技术设计环节,锻炼自己观察能力及知识运用能力。5.社会工作能力得到了相应的提高,在实习过程中,我们不仅从企业职工身上学到了知识和技能,更使我们学会了企业中科学的管理方式和他们的敬业精神。感到了生活的充实和学习的快乐,以及获得知识的满足。真正的接触了社会,使我们消除了走向社会的恐惧心里,使我们对未来充满了信心,以良好的心态去面对社会。同时,也使我们体验到了工作的艰辛,了解了当前社会大学生所面临的严峻问题,促使自己努力学习更多的知识,为自己今后的工作奠定良好的基础。6.增进了我们的师生感情,从这次生产实习的全过程来看,自始至终我们都服从老师的安排,严格要求自己,按时报到,注重安全。本次实习使我第一次亲身感受了所学知识与实际的应用,理论与实际的相结合,让我们大开眼界,也算是对以前所学知识的一个初审吧!这次生产实习对于我们以后学习、找工作也真是受益菲浅。在短短的一个星期中,让我们初步让理性回到感性的重新认识,也让我们初步的认识了这个社会,对于以后做人所应把握的方向也有所启发!16 河南理工大学本科毕业设计(论文)说明书用表面反应来测量圆柱形钢SCM440的磨削力和表面粗糙度的方法 摘要:这项研究的目的是为了有效的分析在磨削过程中的磨削力和表面粗糙度圆柱形工件,材料是钢SCM440,l利用表面反应的方法。传感器用来测量主轴驱动马达的电力,通过磨削参数的变化来测量和分析粗糙度。用实验数据建立一个模型,预测磨削力和粗糙度。通过单独的改变磨削率绘制数学模型的轮廓线。在工业中测量磨削条件是很容易的。关键词:磨削力,表面粗糙度,圆柱形磨棒,表面反应方法 简介:不少实验更多的说明充分和有效的磨削过程是与车削和铣削很不同。由于砂轮表面的不均匀,每次磨削工件时是不一样的。尽管努力的尝试,但是砂轮和工件间的磨削过程还没搞清楚。所以绘制了许多统计模型和计算机模型。不但这些模型很复杂,很难描述磨削过程,而且增加了优化磨削的难度,很难验证磨削参数之间的相互影响和磨削结果。 在过去的几十年中Malkin调查和研究了磨削监测结果和磨削现象如切削机理、磨削能以及磨削参数之间的相互影响。在他的研究中,那是很明显的:切削机理很复杂,很难重复磨削过程而获得相同的磨削条件。Shaji刊登了Taguchi方法。用石墨作润滑剂估算磨削表面的参数。影响切削表面参数的参数如砂轮速度,工件转速,切削深度,打磨模型还有切削力被统计。Kwak先生用Taguchi方法显示了不同的切削参数引起磨削表面几何误差。同样用表面反映方法也可以估算磨削表面的几何误差。 在本论文中,用圆柱形钢SCM440作磨削棒料,用表面反映方法来预测切削力和表面粗糙度和帮助选择磨削条件。2.文献评论 2.1圆柱形磨料切屑形状由于砂轮磨削表面无规则的分布着不规则的磨料,所以磨削机理很复杂,很难能清楚。为了方便研究,假设圆柱形棒料接触点放大,如图1所示。从切屑的形状看,在磨削过程中,砂轮的磨削面与工件的接触点,开始与C点接触,然后沿着弧CD(接触长度)。所以在从C点到I点的过程中切削厚逐渐增加,并在I点达到最大值。在从I点到D点的过程中切削厚又逐渐减小。切屑层的最大厚(g)等于HI长,用公式表示为:在公式中,d表示工件直径,D表示砂轮直径,Z表示切削深度。切削厚的最大值还与平均断削点之间的距离(a)和速比有关。砂轮和工件间接触的弧长被近似为一条直线,公式为: 进给速度f表示工件每旋转一周而砂轮进给的长度,切向切削力Ft和切削功率P0可以用如下公式表示:从公式3中,可以很明显的看出切向力影响圆柱形棒料的磨削参数。 2.2 霍耳效应和磨削力的测量 通常测量磨削过程的磨削力在工业中是用霍耳效应传感器。霍耳效应传感器的原理是霍耳效应。霍耳效应是Dr Edwin Hall在1879年发现的。 通过磨削驱动马达的的电流会产生一个磁场。如果把这个电流通过霍耳传感器,在洛伦兹力的作用下在传感器内产生电压,这个电压叫霍耳电压,电压的大小与通过传感器的电流成比例。所以,测量霍耳电压就可以知道通过驱动马达的电流。2.3.表面反映方法 表面反映法是最佳获得希望输出结果的方法之一。在这种方法中,期望输出值可以用带磨削参数的函数表示。这个函数包括磨削参数被称为表面反映如图2所示。为了建立表面反映模型,首先函数必须化成待定系数多项式。这些待定系数可以有实验确定。 由于表面反映函数涉及到许多参数和要进行许多实验,所以待定系数多项式很复杂。另外改变待定系数计算函数值很难满足所有的实验结果。为了方便常用图形最小二乘逼近和运算规律进行复合计算。3.磨削实验和实验结果3.1实验装置 在这个实验中,圆柱形磨削工件作为实验装置,如图3所示。工件的材料是SCM440钢热处理后达到Rc60。砂轮的类型是在工业生产中常用的WA120KmV。砂轮的直径是320mm,宽度是38mm。 为了测量不断随磨削条件改变的磨削力,三个霍耳传感器被装在主轴电动机电源线上。12v的电源电压被通到霍耳传感器上通过DC电源。霍耳电压随着电流改变的灵敏度是0.4V/A。传感器的反应时间是0.5。用转换器和示波器可以连续的测量传感器的输出霍耳电压。进给方向的粗糙度可以直接测量。 磨削条件是,工件的转速分别是52,64和76rpm。切削深度分别是20,25,30和35进给速度分别是1.19,1.46和2.14m/min。砂轮的转速(1800rpm)保持不变。在所有的实验中用水混合冷却剂冷却。3.2磨削条件对磨削力的影响 在磨削过程消耗的功率等于通过马达的电流和马达电源电压的乘积。如图4所示磨削过程被分成A,B,C和D四个典型的部分。区域A是不工作阶段,在这一区域砂轮和工件没有接触,但是由于砂轮的旋转而消耗功率。当砂轮和工件有一个接触点时(如图4中B区域所示)磨削消耗的功率是变化的,其改变量与磨削条件有关。为了方便在本论文中,总磨削功率等于驱动功率加净磨削功率。总磨削功率被称为磨削圆柱形工件整个过程所消耗的功率。正向进给之后,开始反向进给时是清磨阶段,即是C阶段。如图所示在C阶段时的磨削功率小于正向进给时的磨削功率,但是大于驱动功率。最后是D阶段,砂轮脱离工件完成切削过程。 图5显示的是在不同的工件旋转速度和进给速度下,切削深度对磨削功率的影响。磨削功率随着磨削深度的增加而增加(如图6所示)。尽管磨削功率的增大在不同地方是倾斜的,磨削功率也随着工件转速和进给速度的增加而增加。工件转速对磨削功率的影响如图7所示。在相同的工件转速下,磨削功率相差1.6倍由于磨削深度的不同。由此可见磨削深度对磨削功率的影响比进给速度对磨削功率的影响大。3.3 磨削条件对表面粗糙度的影响 图7显示的是磨削深度对工件切向的粗糙度影响。图7(a)显示的是在不同的磨削深度和工件转速下的粗糙度。由于磨削深度的改变,粗糙度的最大值()成比例的增加,但是粗糙度的平均高度的中心线改变很小,尤其是在进给速度为1.46m/min时。图7(b)显示的是在不同的磨削深度和进给速度下,粗糙度的平均高度的中心线的不同值。3.4 清磨对磨削功率和表面粗糙度的影响 为了确定清磨对磨削功率和表面粗糙度的影响进行实验。清磨对磨削功率和表面粗糙度的影响用图8表示。 由于清磨刚实现,还受磨削深度的影响,所以磨削功率保持最大值如图8所示。但是由于64th清磨的实现和不在受磨削深度的影响,磨削功率降到不工作阶段时的驱动功率。在这个阶段不在有切屑掉下。所以,在几个清磨之后,认为圆柱形磨削工件的材料不在掉下。粗糙度中心线的平均高度值如图8(b)所示。在6th清磨之后,表面粗糙度由于磨削深度的影响而不收敛成定植,必然原因在几个清磨之后,粗糙度很难达到理想值。这是个二难推论,所以要大量的减少清磨的比率,来改善表面粗糙度。由此,处理实际问题要很小心,尤其是选择磨削条件时。4.应用表面反映方法4.1表面反映模型的开发 象前面描述的那样,它能预测不同磨削条件下的磨削功率和表面粗糙度。首先,磨削结果用函数表示,该函数带有实用的磨削参数。在这个研究中,表面反映方法用来获得想要的结果。其次,表面反映模型用工件的转速v(rpm),进给速度f(m/min)和磨削深度d表示为:在公式中,表示磨削功率,表示表面粗糙度。如图9所示,不同的测量值和修正值用来开发表面反映模型公式(4)和(5)。象图9(a)所示,修正过的磨削功率非常的符合测量值。在图9(b)显示的修正过的粗糙度与测量值一致,尽管有一些偏差。 图10表示的是表面反映的一个例子。磨削功率的等高线随着工件转速和进给速度的改变而改变。在这个图中,磨削深度被定为25。在这个3D图中如图10(a)所示,磨削功率的增加是线形的,当工件转速和进给速度增加时。但是,从图10(b)中的等高线可以看出进给速度的影响比工件转速的影响大。工件转速不变时,进给的一个很小的改变都能影响磨削功率, 在图11所示的3D表面粗糙度图中显示粗糙度受工件转速和进给速度的影响比磨削功率大。粗糙度是占优势的当工件转速改变时。4.2 证实表面反映模型 在过去的几十年中,磨削条件的选择很大程度上需要专家去判断。对初学者和技术不熟练的工人来说是很困难的确定适合的磨削条件满足系统规定参数的要求,如粗糙度,切削率,和磨削功率。表面反映模型的建立使磨削条件的选择变的很容易。圆柱形工件每转的切削率可以用下面的公式表示: 式子6中,代表工件的平均直径。如果三个系统规定的参数用如(7)(9)所示的工业要求表示。选择的磨削参数很容易的满足所有的系统规定的参数。尽管这有点象常规的参数优化问题,用表面反映模型很容易的解除来。 一个例子用图12表示:工件转速定在64rpm。首先通过改变进给速度,磨削深度和系统规定的切削率范围绘制粗糙度的等高线,然后把磨削功率加进该等高线。现在磨削条件满足确定所有的系统规定参数,选择被系统参数线所封入的区域。5.结束语 在本论文中,用表面反映方法测量圆柱形SCM440钢磨削工件的磨削功率和表面粗糙度。霍耳传感器测量磨削过程主轴电动机的功率。 基于实验结果,磨削深度对磨削功率的影响比进给速度的影响大。另外,磨削深度对粗糙度的最大值的影响比对粗糙度平均中心线的高度影响大。进行一段时间清磨之后,磨削功率降低到驱动功率,但是不能获得期望的粗糙度。 用磨削参数和二次表面反映模型表示圆柱形工件的磨削功率和粗糙度。由于,磨削功率和粗糙度,利用工业要求和应用表面反映模型轮廓线很容易的可以选取磨削条件。References1 E.S. Lee, N.H. Kim, A study on the machining characteristics in the experimental plunge grinding using the current signal of the spindlemotor, International Journal of Machine Tools & Manufacture 41 (7)(2001) 937951.2 Z.B. Hou, R. Komanduri, On the mechanics of the grinding process,part 2-thermal analysis of fine grinding, International Journal ofMachine Tools & Manufacture 44 (23) (2004) 247270.3 T. Kuriyagawa, K. Syoji, H. Ahshita, Grinding temperature withincontact arc between wheel and workpiece in high-efficiency grindingof ultrahard cutting tool materials, Journal of Materials Processing Technology 136 (13) (2003) 3947.4 A.V. Gopal, P.V. Rao, Selection of optimum conditions for maximummaterial removal rate with surface finish and damage as constraints in SiC grinding, International Journal of Machine Tools & Manufacture43 (13) (2003) 13271336.5 B. Lin, S.Y. Yu, S.X. Wang, An experimental study on moleculardynamics simulation in nanometer grinding, Journal of MaterialsProcessing Technology 138 (13) (2003) 484488.6 M.N. Dhavlikar, M.S. Kulkarni, V. Mariappan, Combined Taguchiand dual response method for optimization of a centerless grindingoperation, Journal of Materials Processing Technology 132 (13)(2003) 9094.7 X. Xu, Y. Yu, H. Huang, Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys, Wear 255 (712) (2003) 14211426.8 S. Malkin, Grinding Technology-theory and Applications ofMachining with Abrasives, Wiley, New York, 1989.9 T.W. Hwang, S. Malkin, Upper bound analysis for specific energy in grinding of ceramics, Wear 231 (2) (1999) 161171.10 S. Shaji, V. Radhakrishnan, Analysis of process parameters in surface grinding with graphite as lubricant based of the Taguchi method, Journal of Materials Processing Technology141 (1) (2003) 5159.11 J-S Kwak, Application of Taguchi and response surface methodologies for geometric error in surface grinding process, International Journal of Machine Tools and Manufacture 45 (3) (2005) 327334.附录2An analysis of grinding power and surface roughnessin external cylindrical grinding of hardened SCM440 steel using the response surface methodAbstract The aim of this study was to analyze effectively the grinding power spentduring the process and the surface roughness of the groundworkpiece in the external cylindrical grinding of hardened SCM440 steel using the response surface method. A Hall effect sensor was usedfor measuring the grinding power of the spindle driving motor. The surface roughness was also measured and evaluated according to thechange of the grinding conditions. Response surface models were developed to predict the grinding power and the surface roughness usingthe experimental results. From adding simply material removal rate to the contour plot of these mathematical models, it was seen that usefulgrinding conditions for industrial application could be easily determined. 2005 Elsevier Ltd. All rights reserved.Keywords: Grinding power; Surface roughness; External cylindrical grinding; Response surface method1. Introduction A lot of attempts have been made to describe moreeffectively and adequately the grinding process. This isdissimilar to other machining processes such as turning andmilling, as the cutting edges of the grinding wheel dont haveuniformity and act differently on the workpiece at eachgrinding. In spite of these attempts, typified by 13,describing the grinding action between the grinding wheeland the workpiece has not been made clear. So statistical models 4 and computer simulations 5 that could deal withthe variety of the cutting edges were introduced. These complexities and difficulties of illustrating the grinding process also raise obstacles to the optimization of the grindingprocess and to the verification of the interrelationship between grinding parameters and outcomes of the process 67. Malkin 89 investigated the process monitoring and studied various grinding phenomena such as cutting mechanisms, the specific energy and the interrelationship of the parameters during past decades. In his research, it was seen that the grinding process had very complex cutting mechanisms and also repeatability was difficult to obtain under the same grinding conditions. Shaji 10 reported a study on the Taguchi method for evaluating process parameters in surface grinding with graphite as lubricant. The effect of the grinding parameters (wheel speed, table speed, depth of cut and the dressing mode) on the surface finish and the grinding force was analyzed. Kwak 11 showed that the various grinding parameters affected the geometric error generated during the surface grinding by using the Taguchi method and also the geometric error could be predicted by means of the response surface method. In this study, the response surface models are developed to predict the grinding power and the surface roughness in the external cylindrical grinding of the hardened SCM440 steel and also to help the selection of grinding conditions.2. Literature review2.1. Chip geometry of external cylindrical grinding The cutting mechanism of the grinding process is very complex and not clear because the grinding wheel has manyirregular abrasives that are randomly distributed in the working area of the wheel circumference. Under several assumptions for convenience, the enlarged contact geometry in the external cylindrical grinding process can be simplyillustrated as shown in Fig. 1. From the chip geometry, it is seen that a cutting edge on the circumference of the grinding wheel contacts firstly a point C on the workpiece and then it moves along the arc CD (contact length) during the grinding. So the chip thickness in a viewpoint of the cutting edge increases gradually from C to I and peaks at point I. And then, the chip thickness decreases from I to D. The maximum chip thickness (g) in the cutting edge is about equal to the lengthHI and can be expressed as below.Where d and D represent the workpiece diameter and the wheel diameter, respectively. Z is the depth of cut. The maximum chip thickness is mostly affected by an average distance (a) between the successive cutting edges at the grinding wheel and the speed ratio ( v V ). The arc of the contact length (lc) between the grinding wheel and the workpiece can also be represented by applying a small angle approximation. Considering traverse speed f that is a traverse length per revolution in the workpiece, a tangential grinding force Ft and an energy Po spent during grinding are as follows. From Eq. (3), it is seen that the tangentialgrinding force(or energy) in the external cylindrical grinding directly concerns a selection of the grinding parameters.2.2. Hall effect and grinding power measurement Usually to measure the spent power of a machine during the process, the Hall effect sensor would be available in many types of industrial applications. The principle of the Hall effect sensor is based on the Hall effect, which was discovered by Dr Edwin Hall in 1879. The current flowing through a cable from the driving motor of a grinding machine produces a magnetic field. If the cable passes into the Hall effect sensor, an induced voltage in the sensor is developed due to the Lorentz force. This voltage is known as the Hall voltage and the amount of the Hall voltage is proportional to the original current flowing into the cable. So from measuring the changes of the Hall voltage, the spent power of the driving motor can beeasily obtained during the grinding process.2.3. Response surface method The response surface analysis is one of various methods for optimizing and evaluating the process parameters to achieve the desired output. In this method, the desired output can be represented as a function of the process parameters. The function that consists of the process parameters is called a response surface as shown in Fig. 2. In order to develop the response surface model, firstly the function must be assumed as a mathematical polynomial form having coefficients that should be determined. And then these coefficients are determined with applying the set of the experimental results. In the case of the situation that the response surface function is related to various process parameters and a lot of experiments are conducted, the calculation for determining coefficients of the polynomial equation is very complex. And also it is difficult to finish the calculation by determining adequate coefficients that have to satisfy all of the experimental results. The scheme of a least square error, therefore, is usually adopted and a commercial code is used for convenience of the multiple calculation.3. Grinding experiment and obtained results3.1. Experimental set-up The experimental set-up for the external cylindrical grinding usedin this study is shown in Fig. 3. The workpiece material was the chromiummolybdenum steel (SCM440) and heat-treated to Rc 60. This material is commonly used for rotating shafts. The grinding wheel wasa type of WA120 Km V that is widely used in various industrial areas. The diameter of the wheel was 320 mm and the width 38 mm. To evaluate the change of the grinding energy according to thevarious grinding conditions, three Hall effect sensors were installed in the electric cables of the grinding spindle motor. The current source of 12 V in the Hall effect sensors was supplied from a DC power supply unit. The sensitivitybetween the current change in the spindle motor andthe output voltage in the Hall effect sensor was 0.4 V/A. The response time of the sensor was about 0.5 ms. The output voltage of the sensor was continuously measured by using an A/D converter and an oscilloscope during the grindingprocess. After the grinding, the surface roughness in the traverse direction in the workpiece was measured. In the grinding conditions, the workpiece revolution speeds were 52, 64 and 76 rpm. The depths of cut in a pass were 20, 25, 30 and 35 mm and the traverse speeds were 1.19, 1.46 and 2.14 m/min. The wheel speed (1800 rpm) was maintained and a water-miscible coolant was supplied in all grinding experiments.3.2. Effect of grinding conditions on power The grinding power that was spent during the grinding process was obtained by multiplying the measured current flowing into the spindle motor cable and the supplied voltage of the motor. Fig. 4 shows a typical signal form of the grinding power during the process cycle that consisted of 4 individual parts illustrated as A, B, C and D. Region A was an idle stage with no contact between the grinding wheel and the workpiece. Although there was no contact,power was used in turning the grinding wheel. On contact between the wheel and the workpiece, the grinding power(see region B shown in Fig. 4) changed. The amount ofchange depended on the grinding conditions. For convenience,in this study, the total grinding power, which added the driving power to the net grinding power, was defined asthe grinding power spent during the external cylindrical grinding process. At the end of a feed forward action in the grinding wheel, the grinding wheel started the feed backward traverse, referred to spark-out motion shown inregion C. As seen in region C, the grinding power was less than that of the feed forward traverse but was more than the driving power. Finally in region D, the grinding wheel disengaged the workpiece and finished the process cycle. Fig. 5 presents the effect of the depth of cut on the grinding power for different workpiece revolution speed and traverse speed. The grinding power spent during the grinding process increased with increasing depth of cut(Fig. 6). Although the slopes of the grinding power increases were somewhat different, grinding power was also increased with increasing workpiece speed and traverse speed. The effect of the workpiece speed on grinding power is shown in Fig. 7. Although the same workpiece speed was applied, the grinding power differed about 1.6 times according to the depth of cut. From the results, it is seen that increasing the depth of cut affected the grinding power more than increasing the traverse speed.3.3. Effect of grinding conditions on surface roughness Fig. 7 shows the effect of depth of cut on surface roughness of the workpiece, which is measured along the traverse direction. Fig. 7 (a) shows surface roughness for different depths of cut and workpiece speeds. According to the change of the depth of cut, the maximum height (Rmax) of the surface roughness increased proportionally but the centerline average height (Ra) changed little especially in the case of the traverse speed of 1.46 m/min.Fig. 7 (b) shows the centerline average height of the surface roughness for different depths of cut and traverse speeds.3.4. Effect of spark-out on grinding power and surface roughness To determine how spark-out motion affected the grinding power and the surface roughness, the experiments were conducted. The effect of the spark-out on the grinding power and the surface roughness are presented in Fig. 8. In the case of the first spark-out implementation, the grinding power maintained a higher magnitude according to the depth of cut as shown in Fig. 8 (a). But in the case of the 6th spark-out implementation, the grinding power went down to near the driving power of the spindle motor at the idle stage and wasnt affected by the depth of cut or the traverse speed. In this stage, there is no more material removal. So, it was seen that material removal in externalcylindrical grinding was completed after several spark-outs. The centerline average height of the surface roughness is shown in Fig. 8 (b). After the 6th spark-out implementation, the surface roughness according to the depth of cut had not converged to a constant magnitude and a desired surface roughness in certain cases was not achieved even by severalspark-outs. This is a dilemma to be solved, because more spark-outs decrease production rate but produce a good surface roughness. Therefore it is necessary to deal with this matter carefully, especially in the selection of the grindingconditions.4. Applying response surface method4.1. Development of response surface models As mentioned in the previous section of this study, it is desirable to be able to forecast grinding power and surface roughness according to the grinding conditions. One means of doing this is to represent grinding outcomes mathematically as a function of the applicable grinding parameters. In this study, the response surface method was used to achieve the aim. Second-order response surface models using the workpiece revolution speed v (rpm), the traverse speed f(m/min) and the depth of cut d (mm) were developed asWhere, the symbol Po (W) was the grinding power and Ra (mm) the surface roughness. Fig. 9 shows the difference between the measured quantity and the predicted quantity by applying the developed response surface models lists inEqs. (4) and (5). As shown in Fig. 9(a), the predicted grinding power well coincides with the measured grinding power and also the predicted surface roughness shown in Fig. 9(b) corresponded with the measured value although ithad some wide deviation in the distribution. Fig. 10 presents an example of the response surface and contour plots of the grinding power according to the change of the workpiece speed and the traverse speed. In these plots, the depth of cut was fixed as 25 mm. The 3D plot of the grinding power shown in Fig. 10 (a) seems to increase linearly in accordance with increasing the workpiece speed and the traverse speed. But from the contour plot shown in Fig. 10 (b), it is seen that the traverse speed has a greater in fluence on the grinding power. A small change of the traverse speed with a fixed workpiece speed, affected the grinding power. The 3D plot of the surface roughness, as represented in Fig. 11, shows a more rapid change than the grinding power according to the workpiece speed and the traverse speed. The surface roughness was dominantly affected by the change of the workpiece speed.4.2. Validation of developed response surface models In past decades, selecting the grinding conditions strongly depended upon an experts judgment. So, it was very difficult for beginners or unskilled workers to determine the proper grinding conditions to satisfy all demanded constraints such as the surface roughness, the material removal rate and the grinding power to be spent. The developed response surface models enable selection of the grinding conditions without much grinding experience. The material removal rate per minute, MRR (mm3/min), during the external cylindrical grinding can be written as follows: In Eq. (6), the symbol Da (mm) represents the average diameter of the used workpiece. If three constraints for industrial application were as Eqs. (7)(9), the selected grinding conditions have to satisfy all constraints. Althoughit looks like a conventional optimization problem, it can be simply solved by using the developed response surface models. An example is presented in Fig. 12. In this case, the workpiece revolution speed was fixed as 64 rpm. Firstly the contour plot of the surface roughness was drawn according to the change of the traverse speed and the depth of cut and then the given constraint ranges at the material removal rate and the grinding power were added into the contour plot. Now, the grinding conditions satisfying all constraints can be determined by sel
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。