


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
翻折与旋转在正方形解题中的应用季红娟(江苏省常州市武进区前黄实验学校 213172)正方形素有完美的四边形之称,利用其本身的特性,巧用旋转和对称,对学生能力的培养是很有好处的。人教版数学八年级教科书中,有这样的一道习题:如图1,四边形ABCD是正方形,点E是边BC的中点,AEF=90,EF交正方形外角的平分线CF于F。求证:AE=EF。 图1 图2按照教材提示做辅助线:在AB上任取一点M,使AM=EC,连结ME,如图2,因为MAE=FEC,AME=ECF,所以AMEECF,故AE=EF。这样很容易获得结果。但我们对于这道题目不妨做如下的探讨和研究:(1)将上述问题中“点E是边BC的中点”,改为“点E是边BC上的任意一点”,其他条件不变,求证:AE=EF。(如图3)方法1:回归原问题,做同样的辅助线,如图3,在AB上取一点M,使得AM=EC,可以证明AE=EF。 图3 图4方法2:如图4,连结AC并延长到H,使CH=CF,连结EH。HCEECF H=F,EF=EH EAC=F EAC=H, AE=EH AE=EF此解法的基本思路就是构造全等,转化。我们可以看成将FEC沿BC所在直线翻折而得到HCE,是轴对称的一个简单运用。同样的,我们将AEB沿BC所在直线翻折而得到HEB,自然就有:方法3:如图5,延长AB、FC交于H点,连EH。可得AE=EH=EF。证明过程略。方法4:如图6,连AC,在AC上取一点Q,连EQ,使EQ=EC。 FCEAQE AE=EF此方法的实质不就是将FCE绕点E按逆时针方向旋转90而出现的结果吗?多么完美的全等变换! 图5 图6 同样,若将AEB绕点B按顺时针方向旋转90,就会有:方法5:如图7,延长AB到R,使BR=BE,连RE,RCABECBR BCR=BAE FEC=BAE BCR=FECEFRC REC=FCE=135ERFC四边形ERCF为平行四边形CR=FE AE=FE 图7 解法既漂亮又完美。证明了结论还复习了平行四边形的有关知识,而且还是旋转的一个简单应用。(2)若E在BC的延长线上,其他条件不变,AE与EF还相等吗?试说明理由。 有了(1)的讨论,我们可以用类似的方法证明(2)的结论仍然成立,如图8,9,10。对于证明的过程就省略不写了。 图8 图9 图10反思:问题的解答与探索,总结其方法,不就是构造全等,运用旋转与翻折吗?根据全等变换自身的特点,我们可以将其进行推广,可以进行下面更一般的探讨:2、如图11,若ABC为等边三角形,D为线段BC上任意一点,ADE=60,DE交ACB的外角平分线CE于E点,求证:AD=DE。方法1:如图12,延长AC到P,使CP=CE,连结DP。(此方法实质即将EDC沿BC所在直线翻折而得到PDC)。可证EDCPDC,得DE=DP, E=PE=DAC=P AD=DP=DE 图11 图12方法2:如图13,延长EC到P,使CP=CA,连结DP、DB。(此方法实质上是将ADC或ABD沿BC所在直线翻折而得到的)。 图13 图14方法3:如图14,将ABD绕B点顺时针旋转60到CBP的位置,连PD。证明过程略。(此方法是旋转的简单应用)在平面几何中,正方形是最特殊的四边形,它集平行四边形、矩形和菱形的性质于一身.因而在考察学生对四边形知识的掌握情况时,以正方形为背景的题目更具灵活性、代表性和综合性,因而成为各类命题的热点。作者:季红娟电子信箱:ba
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家政保姆中介合同范本
- 广告制作安装合同书范本3篇
- 建筑节能行业新技术应用方向
- 农业科技示范园规划初步设计中的农业市场潜力评估报告
- 农产品品牌建设资金申请报告:2025年行业发展趋势与竞争格局分析
- 河北省衡水市安平县安平中学2025-2026学年高一上学期开学测试思想政治试卷
- 2025年信号与系统试卷及答案
- 小米解锁l题库及答案
- 2025年交通设计试题及答案
- 2025年士兵军校试题及答案
- 北师大版数学一年级上全册每课练习试题
- 修剪指甲培智五年级上册生活适应教案
- 《昆虫记》整本书阅读教学设计
- DB61-T 1295-2019保水采煤技术规范
- 八年级上册英语开学第一课
- 民事纠纷委托律师合同书
- 《统计学(第二版)》全套教学课件
- 应知应会质量管理
- 跨文化传播-导论课件
- 博士后出站研究报告
- 危险货物道路运输规则jtt617-2018
评论
0/150
提交评论