说明书.doc

DNXW100铁路公路两用旋挖钻机设计【11张CAD图纸与说明书全套资料】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共46页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:49665216    类型:共享资源    大小:7.45MB    格式:RAR    上传时间:2020-02-15 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
11张CAD图纸与说明书全套资料 DNXW100 铁路 公路 两用 钻机 设计 11 CAD 图纸 说明书 全套 资料
资源描述:

【温馨提示】====设计包含CAD图纸 和 DOC文档,均可以在线预览,所见即所得,,dwg后缀的文件为CAD图,超高清,可编辑,无任何水印,,充值下载得到【资源目录】里展示的所有文件======课题带三维,则表示文件里包含三维源文件,由于三维组成零件数量较多,为保证预览的简洁性,店家将三维文件夹进行了打包。三维预览图,均为店主电脑打开软件进行截图的,保证能够打开,下载后解压即可。======详情可咨询QQ:414951605

内容简介:
DNXW100铁路公路两用旋挖钻机 课题来源 牡丹江建机厂答辩学生 许建刚指导老师 赵伟民 教授 1 概述旋挖钻机作为新型深基础桩孔施工设备 与传统的工程钻机相比 具有高效率 低噪音 低污染等特点 旋挖工法已经成为重要的桩孔施工手段 它对加快建设速度 保证工程质量 降低工程成本 提高作业效率 保护环境具有重要的意义 而铁路公路两用旋挖钻机因其运输的灵活性也即将成为旋挖钻机家族的新星 但因国内旋挖钻机发展历史较短 所以铁路 公路两用旋挖钻机在国内尚属空白 铁路公路两用旋挖钻机的优越性运输方便钻进速度快 成孔时间短作业占地面积小成孔质量高 费用低 且保护周围环境 2 车载旋挖钻机的方案确定及总体设计主要性能参数如下表 铁路公路两用旋挖钻机方案的确定旋挖钻机的结构主要有底盘 钻桅 变幅机构 主副卷扬 动力头 钻杆 钻头 转台 发动机系统 驾驶室 覆盖件 配重 液压系统 电气系统等 1 底盘铁路公路两用旋挖钻机可采用把车载式旋挖钻机进行铁路化改造的方案 汽车底盘可向国内专业汽车生产商购买 在汽车底盘的基础上 为适应铁路上运输的需要 应加装轨道行驶机构 而为了满足旋挖钻机工作时性能要求 须加装液压支腿 2 钻桅 创新点 桅杆是动力头和钻杆的附着体 现多采用折叠式 有圆形 矩形截面两种 桅杆顶部装有滑轮组 用来完成对动力头 钢筋笼和注浆导管的起降 桅杆前面两侧配有矩形导轨 作为动力头上下运动的导向 桅杆上依次装有滑轮架 加压油缸及动力头 考虑到此次设计的结构要求 决定不采用折叠式 而把上 中 下节都合成一节 并且为减少整车高度 采用上面是矩形截面 而下面是M型截面 矩形截面 M形截面 3 变幅机构变幅机构常用形式有两种 分别为平行四边形和三脚架的两级变幅机构和大三角形变幅机构 平行四边形变幅机构大三角形变幅机构 经比较两种形式的优缺点后决定选择平行四边形变幅机构 4 主副卷扬主卷扬用以提升和下放钻杆 卷扬驱动方式为液压驱动 主卷扬是在钻进过程当中完成钻杆和钻头下放和提升等功能的机构 而副卷扬的主要功能是完成工地上所需的焊机钻头等附属物品的起吊 卷扬机构主要由液压马达 内藏式卷扬减速器 卷扬筒 钢丝绳 压绳器等组成 5 动力头动力头是钻机工作的动力源 它驱动钻杆 钻头回转 并能提供钻孔所需的加压力 提升力 能满足高速甩土和低速钻进两种工况 动力头驱动钻杆 钻头回转时应能根据不同的土壤地质条件自动调整转速与扭矩 以满足不断变化的工况 大庆石油学院毕业设计(论文)任务书题目 DNXW100铁路公路两用旋挖钻机专业 机制05-02班 学号 050401140225 姓名 许建刚主要内容、基本要求、主要参考资料等:1、 主要内容铁路公路两用旋挖钻机的总体设计;铁路公路两用旋挖钻机结构分析;液压系统的设计分析;进行整机稳定性分析。2、 基本要求 设计机器总体、主要部件、主要零件、机器立体图、液压原理图等,折合0号图纸5张;设计计算书1.5万字;外文资料翻译3000汉字。3、主要参考资料a、机械设计手册;b、相关专业机械书籍;c、相关专业机械文章、专利资料;d、相关生产机械厂家样本、图纸等。完成期限: 3月31日6月22日 指导教师签名: 专业负责人签名: 2009 年 3 月 13日用岩石模量比率对钻机进行技术性能分析摘要利用不同研究者通过实验得出的原始数据可对岩石模量比率和旋转钻进或冲击钻进的钻机钻进速率之间的关系进行统计性的调查。我们发现在岩石模量比率和旋转式金刚石钻机的钻机速率之间存在一个相反的幂率。旋转式金刚石钻机的钻进速率随着岩石模量比率的增加而变小。但是,冲击钻机的钻机速率却随着岩石模量比率而变大。冲击钻机的钻进速率和岩石模量比率之间有显著的线性相关的关系。在冲击钻进的一个实验中显示,对于孔隙度低于1.23%的岩石,冲击速率会随着岩石模量的变化显著变化。所以可以得出岩石模量比率也许是岩石可钻进性的一个代表测量量的结论。但是,要确定在别的种类的岩石中也能得出同样的方程式则需要做更多的研究。我们需要对孔隙度做更多的调查以确定它在岩石模量和钻进速率之间所起的作用。简介旋转钻机、金刚石钻机和冲击钻机已在采矿、采石和工程上有广阔的应用。对钻机的钻进速率的预期已经成为对岩石挖掘项目进行成本估计和制定施工计划的一项重要因素。岩石的模量比率,即压缩力弹性模数的比率,是一种重要的岩石性质,指示的岩石的可塑性。从不同研究者处得到的岩石性质和工作特性会在各自的列表中列出。在这篇文章中,利用从不同研究人员从实验中得到的原始数据对岩石模量比率和可钻性之间的关系进行统计性的分析。但是,现在没有一种已出版的资料能说明岩石模量比率与可钻性之间的关系。在这篇文章中,利用从不同研究人员从实验中得到的原始数据对岩石模量比率和可钻性之间的关系进行统计性的分析。从不同研究者处得到的岩石性质和工作特性会在各自的列表中列出。先前的岩石可钻性研究它也表明钻进速率在岩石的压缩力大于173MPa后不再发生显著的变化。钻进速率与压缩力和抗张强度有密切的关系。Paone和Madson(1966)用金刚石钻头分别在实验室的7种类型岩石和野外的21种岩石上进行可钻性研究.Paone统计性的分析了表面镶嵌钻头和金刚石钻头。结果表明影响表面镶嵌钻头钻进速率的因素是推力、旋转速度、压缩力、硬度和石英含量。对于金刚石钻头,最重要的影响因素是推力、杨氏模量、剪切模量、磨蚀性、石英含量和压缩力。Howarth(1986)用薄壁浸渍钻头研究可钻性和钻进速率与岩石性质之间的关系。但是,钻进速率与回弹仪的值和干燥的耐压强度关系却不大。钻进速率表现出与干燥潮湿程度、饱和速度、潮湿时的压缩力和岩石气孔率有很大关系。但是,钻进速率与回弹仪的值和干燥时的耐压强度关系却不大。Ersoy 和 Waller (1995) 用PDC钻头和金刚石取心钻头在不同的旋转速度和一系列钻压下在实验室进行可钻性研究。他们利用多元回归分析建造了模型。浸渍钻头模型包含两种硬度(莫氏硬度和肖式硬度),它的相关性也不强。混合钻头的模型表明主要影响因素为钻压、晶粒形状和莫氏硬度。结果表明影响钻进速率的主要因素为PDC钻头上的钻压、旋转速度、冲蚀度和肖式硬度。Fish (1968) 为旋转钻进钻机建立的一个模型,它的钻进速率与推力成正比而与单轴压缩强度成反比。但是,Singh (1969) 表明压缩力不与切削型钻头的钻进速度有关系。Adamson (1984) 研究后六种岩石后表示岩石晶体数量、结构系数和旋转钻进的钻进速率有很大关系。在他们的研究中,单轴压缩强度成为了岩石性质中的决定因素。Karpuz(1990)在96个不同地点以及土耳其煤炭公司的16个矿场进行研究后建立了曲线回归模型用以预测旋转钻进的钻进速率。Pandey(1991)从微型钻头凿岩试验中发现了钻进速率与压缩力、抗张强度、切变强度之间存在对数关系。Kahraman (1999)利用野外观察经验建立了多次回归模型以预测旋转钻进的钻进速率。结果说明影响旋转钻进的主要因素是钻压、旋转速度、钻头直径和压缩力。通过研究压凹硬度试验中的力的透入性弧线,Kahraman(2000)确定了一个新的可钻性指数,并且用这个指数创立了一个精确的钻进速率模型。它们也证明可钻性指数与压缩力、拉力、集中载荷指数、回弹仪的值、冲击强度、地震纵波速度、弹性模数和密度有关系。利用研究人员得到的原始数据,Kahraman在2002年统计性的调查了钻进速率与三种不同程度脆性的金刚石钻头之间的关系。研究表明钻进速率与金刚石钻头的脆性无关。但是,旋转钻头却与脆性值与其钻进速率有很大的关系。Altindag (2002) 则提出观点说一种新的脆性指数与旋转钻孔钻机的可钻进性有关系。他发现这种新的脆性指数与可钻进性指数有显著的关系。Bilgin 和 Kahraman (2003)研究了在14种岩石和8个露天采矿场的旋转钻孔,确立了钻进速率和岩石性质之间的关系。他发现单轴压缩强度、集中载荷、回弹仪值、硬度和冲击强度与钻进速率之间有很大关系,而且还与抗张强度和锥构刻压仪有关。冲击钻孔 Protodyakonov (1962) 进行了跌落实验,并对应用于岩石阻力测量的CRS进行了描述。这个实验最后被Paone(1969)、Tandanand 和 Unger(1975)、Rabia(1980)和 Brook(1981)进行了修正。Paone在野外进行了冲击钻实验。在九个坚硬、磨蚀的岩石上的冲击钻实验显示单轴压缩强度、抗张强度、肖式硬度和静态杨氏模数对冲击钻进的影响不大,而CRS却有更大的影响。这说明预测钻进速率不能依靠单个岩石性质。它表明CRS在预测钻进速率上比其他岩石特性有更高的可靠性。Rabia 和 Brook 利用这个修改了的实验装置来确定岩石的冲击硬度值,并建立了一个同时适用于预测钻孔和风钻钻机的钻进速率的经验公式。这个公式使钻进速率和钻头工作负载、肖式硬度和岩石的冲击硬度值向关联起来。Selmer-Olsen 和 Blindheim (1970) 在野外用带有冲击钻头的轻型岩凿设备进行了冲击钻实验。结果表明了钻进速度与DRI有关,而在钻孔过程中,岩石的硬度、强度、脆性和冲蚀度是重要因素。Selim 和 Bruce (1970) 在实验室中用9块石头进行了冲击钻进实验。他们利用一台特制钻机证明钻进速度与压缩力、抗拉强度、肖式硬度、密度、静态和动态的杨氏模数、剪切模量、CRS和石英含量有关,并且建立了线性预测方程。他们说这个方程可以用来预测冲击钻的工作特性。Schmidt 在1972年证明钻进速率与压缩力、抗拉强度、肖式硬度、密度、静态和动态杨氏模数、纵向速度、剪切速度和泊松比有关。他发现只有压缩力和那些特性与钻进速度密切相关,例如抗拉强度和杨氏模数。Pathinkar 和 Misra (1980) 通过在实验室五种不同石头上的的钻进研究确定了与钻进速率有关的几种岩石特性,并且阐述传统的岩石特性例如压缩力、抗张强度、具体功率、肖式硬度和莫氏硬度与冲击钻钻进速率都不是单一相关的。他们确定了与钻进速率有关的已系列岩石特性,但是之间的关系相当复杂。Howarth (1986)证明与钻进速率有关系的岩石特性有体积密度、潮湿时的压缩力、气孔率和潮湿时的纵向速度。但是,钻进速度与回弹仪的值和干燥时的压缩力却关系不大。而孔隙度却能影响可钻性,因为高的孔隙度可能利于形成断面路径以及使断面路径间形成网络。Howarth 和 Rowland (1987)建立了测量岩石结构数量的方法结构系数,并且发现冲击钻钻进速率与岩石的结构系数之间有紧密的联系。这个发现表明具有高结构系数的岩石可钻性不好而它的压缩力也高。Thuro 和 Spaun (1996)利用20KW和15KW的落锤测量钻进速率。他们确定了与钻进速率有观点的岩石特性并且得出了钻机钻机速率与压缩抗拉强度有很强的对数关系。为说明与可钻性之间的韧性,他们也引进了一种新的岩石特性,叫作破碎强度。破碎强度与可钻性之间是显著相关的。Performance analysis of drilling machines using rock modulus ratioby S. Kahraman*SynopsisThe correlations between the modulus ratio and penetration rate of rotary and percussive drills were statistically investigated using the raw data obtained from the experimental works of different researchers. An inverse power law was found between the modulus ratio and the penetration rate of rotary and diamond drills. The penetration rate of rotary drills and diamond drills decrease with an increasing modulus ratio. The penetration rates of percussive drills increase with an increasing modulus ratio. There are significant linear correlations between the penetration rates of percussive drills and the modulus ratio. In one of the cases of percussive drilling, a strong correlation between the penetration rate and the modulus ratio was found for the rocks having a porosity value lower 1.23 %. It can be concluded that the modulus ratio might be a representative measure of rock drilling efficiency. However, further study is necessary to check the validity of the derived equations for other rock types. The effect of porosity on the correlations between the modulus ratio and penetration rate needs to be further investigated.IntroductionRotary drills, diamond drills and percussive drills have been extensively used in open pits, quarries and construction sites. The prediction of the penetration rate of drilling machines is very important in the cost estimation and the planning of the rock excavation projects. The rock modulus ratio, which is the ratio of elastic modulus to compressive strength, indicating the deformability, is a very important rock property. However, there is no available published material on the relationship between modulus ratio and drillability. In this study, the correlations between the modulus ratio and drillability were statistically analysed using the raw data obtained from the experimental studies of different researchers. Rock properties and performance data obtained from the works of different researchers were listed in the respective tables. Previous drillability studiesPaone and Madson (1966) carried out drillability studies with impregnated diamond bits on 7 rock types in the laboratory and on 21 rock types in the field and correlated penetration rates with rock properties. Penetration rates correlated quite well with compressive and tensile strengths. It was also seen that penetration rates do not change significantly for rocks having a compressive strength greater than 173 MPa.Paone et al. (1966) statistically analysed the drilling capability of surface-set and impregnated diamond bits. The results indicated that the most significant parameters affecting penetration rates of surface-set bits were thrust, rotational speed, compressive strength, Shore hardness and quartz content. For impregnated diamond bits, the most significant parameters were thrust, Youngs modulus, shear modulus, abrasiveness, quartz content and compressive strength. Howarth et al. (1986) performed drillability studies with a thin walled impregnated bit with water flushing and correlated penetration rates with rock properties. Penetration rates exhibited strong correlations with dry and saturated density, saturated Pwave velocity, saturated compressive strength and apparent porosity. However, the correlations between penetration rate and Schmidt hammer value and dry compressive strength were weak.Ersoy and Waller (1995) conducted drillability studies in the laboratory with polycrystalline diamond compact (PDC) and impregnated diamond core bits using a fully instrumented drilling rig at different rotational speeds and with a range of weights on bit. They developed predictive models using multiple regression analysis. The results showed that the parameters significantly affecting penetration rate of PDC bit were weight on bit, rotational speed, Cerchar abrasivity index and Shore hardness. The model for hybrid bits indicated that the significant parameters were weight on bit, round per minute grain-shape factor and Mohs hardness. The model for impregnated bits comprised two hardness parameters (Mohs hardness and Shore hardness) alone and its correlation coefficient was weak.Fish (1968) developed a model for rotary drills that penetration rate is directly proportional to thrust and inversely proportional to uniaxial compressive strength.However, Singh (1969) showed that compressive strength is not directly related to the drilling rate of a drag bit. Adamson (1984) showed a close correlation between a quantitative measure of rock texture, the texture coefficient, and penetration rate data of a rotary drilling machine in six rock types.As result of research carried out at 96 different locations at 16 mines of Turkish Coal Enterprises, Karpuz et al. (1990) developed curvilinear regression models for the prediction of penetration rates of rotary blast hole drills. In their study, the uniaxial compressive strength has been determined as the dominant rock property.Pandey et al. (1991) correlated the penetration rate value obtained from a microbit drilling test with compressive strength, tensile strength, shear strength and Protodyakonov Index and found logarithmic relations.Kahraman (1999) developed a multiple regression model for the prediction of penetration rates of rotary blast hole drills using the data obtained from field observations. The results indicated that the parameters significantly affect penetration rate of rotary blast hole drills were weight on bit, rotational speed, bit diameter and compressive strength. Kahraman et al. (2000) defined a new drillability index from force-penetration curves of indentation tests and developed a mathematical penetration rate model for rotary drills using this new drillability index. They also correlated this drillability index with compressive strength, tensile strength, point load index, Schmidt hammer value, impact strength, P-wave velocity, elastic modulus and density and found significant correlations.Kahraman (2002) statistically investigated the relations between the penetration rate of rotary and diamond drills and three different degrees of brittleness obtained from compressive strength and tensile strength using the raw data obtained from the experimental works of different researchers. The results indicated that there was no correlation between the penetration rate of diamond drills and brittleness values. However, strong correlations were found between the penetrations rate of rotary drills and brittleness values obtained from compressive strength and tensile strength.Altindag (2002) suggested a new brittleness index obtained from compressive strength and tensile strength and correlated this index with the drillability index for rotary blast hole drills. He found significant correlations between the new brittleness index and drillability index.Bilgin and Kahraman (2003) observed rotary blast hole drills in fourteen rock types at eight open pit mines and correlated the penetration rates with rock properties. They found that the uniaxial compressive strength, the point load strength, Schmidt hammer value, cerchar hardness and impact strength show strong correlations with the penetration rate. The Brazilian tensile strength and cone indenter hardness exhibit quiet good correlations with the penetration rate. Percussive drillingProtodyakonov (1962) developed drop tests and described the coefficient of rock strength (CRS) used as a measure of the resistance of rock by impact. The Protodyakonov test was then modified by Paone et al. (1969), Tandanand and Unger (1975), and Rabia and Brook (1980, 1981). Paone et al. conducted research work on percussion drilling studies in the field. They concluded that uniaxial compressive strength (UCS), tensile strength, Shore hardness and static Youngs modulus correlated tolerably well with penetration rates of percussive drills in nine hard, abrasive rocks. A much better correlation was obtained by using the CRS. They stated that no single property of a rock was completely satisfactory as a predictor of penetration rate. Tandanand and Unger developed an estimation equation that showed good correlations with actual penetration rates of percussive drills. They concluded that CRS shows its usefulness in predicting penetration rate with higher reliability than other rock properties.Rabia and Brook used the modified test apparatus to determine the rock impact hardness number and developed an empirical equation for predicting drilling rates for both down the hole and drifter drills. The equation relating penetration rate to drill operating pressure, Shore hardness and rock impact hardness number was found to give excellent correlation for field data obtained from down the hole and drifter drills. Selmer-Olsen and Blindheim (1970) performed percussion drilling tests in the field using light drilling equipment with chisel bits. They found a good correlation between penetration rate and the drilling rate index (DRI) and expressed the rock properties that are important in drilling as hardness, strength, brittleness and abrasivity. Selim and Bruce (1970) carried out percussive drilling experiments on nine rocks in the laboratory. They correlated the penetration rate for a specific drill rig with compressive strength, tensile strength, Shore hardness, apparent density, static and dynamic Youngs modulus, shear modulus, coefficient of rock strength (CRS) and percentage of quartz, and established linear predictive equations. They stated that the established equations can be used for the prediction of the performance data of percussive drills.Schmidt (1972) correlated the penetration rate with compressive strength, tensile strength, Shore hardness, density, static and dynamic Youngs modulus, shear modulus, longitudinal velocity, shear velocity and Poissons ratio. He found that only compressive strength and those properties highly correlated with it, such as tensile strength and Youngs modulus, exhibited good correlations with penetration rate. Pathinkar and Misra (1980) correlated several rock properties with penetration rate in five different rock types as obtained from laboratory drilling and concluded that conventional rock properties such as compressive strength, tensile strength, spe
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:DNXW100铁路公路两用旋挖钻机设计【11张CAD图纸与说明书全套资料】
链接地址:https://www.renrendoc.com/p-49665216.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!