




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理教学设计长沈路学校 八年级 李慧一、教材分析(一)教材的地位与作用勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。勾股定理不仅在数学和其他学科中有着广泛的应用,而且它的起源和证明还蕴含了丰富的数学思想方法和文化价值。学生通过对勾股定理 的学习,可以在原有的基础上对直角三角形有进一步的认识和理解,也是后面将要学习的锐角三角函数、解直角三角形的基础。(二)教学目标 基于以上分析和数学课程标准的要求,制定了本节课的教学目标。知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想解决问题:1通过拼图活动,体验数学思维的严谨性,发展形象思维2在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果情感态度:1通过对勾股定理历史的了解,感受数学文化,激发学习热情2在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神(三)教学重难点重点:探索和证明勾股定理难点:用拼图方法证明勾股定理二、学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。通过小组讨论交流,能够形成解决问题的思路。现在的学生已经厌倦教师单纯的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会,更希望教师满足他们的创造愿望。三、教法与学法分析教法分析:八年级学生经过之前的几何学习,几何图形的观察、几何证明的理性思维能力已初步形成。因此在教学中要力求实现以教师为主导,以学生为主体,以知识为载体,以培养学生的“思维能力,动手能力,探究能力”为重点的教学思想。尽量为学生创设“做数学、玩数学”的情境,让学生从“学会”到“会学”,使学生真正成为学习的主人。学法分析:八年级学生生活经验积累较少,缺乏严谨的逻辑推理能力。所以在探索勾股定理时,主要通过直观的,乐于接受的拼图法去验证勾股定理。“操作思考”的方式符合八年级学生认知水平,适应其思维发展规律及心理特征。让学生感悟到:学习任何知识的最好方法就是自己去探索,在探索中领悟、在领悟中理解,让他们“学会学习”。四、教学策略 本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。五、教学过程教学环节教学内容活动和意图视频欣赏引入新课通过观看教学视频了解勾股定理的历史,由此引入今天的课题。这样的引入可唤起学生的好奇心和求知欲,激发学生对勾股定理的兴趣,使学生带着疑问进行教学。同时为探索勾股定理提供背景材料,进而引出课题。探索发现归纳定理活动一:动脑想一想观察下图正方形大小,你能发现图中正方形P、Q、R的面积之间有什么关系?从中你发现了什么?(1)方形P的面积为 ,正方形Q的面积为 ,正方形R的面积为 。(2)你能发现图中正方形P、Q、R的面积之间有什么关系?从中你发现了什么?活动二:等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?观察图14.1.2,如果每一小方格的面积代表单位1,那么可以得到什么结论?活动三:让学生自己总结,并用符号语言、文字语言表达勾股定理的内容。勾股定理:直角三角形两直角边的平方和等于斜边的平方。勾股定理揭示了直角三角形三边之间的关系。“问题是思维的起点”,通过层层设问,引导学生发现新知。渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。合作交流拼图验证四个人一组,交流讨论,如何利用四个直角三角形通过拼图的办法证明勾股定理。四个直角三角形的面积+中间小正方形的面积=大正方形的面积,即化简得:四个直角三角形的面积+中间小正方形的面积=大正方形的面积,即化简得:通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。利用分组讨论,加强合作意识。1、经历所拼图形与多媒体展示图形的联系与区别。2、加强数学严密教育。从而更好地理解代数与图形相结合学以致用体会美境例1 在Rt ABC中,已知B=90,AB=6,BC=8.求AC. 练习:在Rt ABC中,AB=c,BC=a,AC=b, C=90.(1)已知a=6,c=10,求b;(2)已知a=24,c=25,求b. 例2 如图,受台风影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?让学生有机地把握所学的知识技能,用来解决实际问题,加强对定理的理解,从而突出重点。突破重点和难点的方法,发挥学生主体作用,通过学生动手实验,让学生在实验中探索,在探索中领悟,在领悟中理解。总结升华完善课题一个定理:勾股定理一次探索:从特殊到一般一种思想:数形结合一份自豪:身为中国人学生通过对学习过程的小结,领会其中的数学思想方法;通过梳理所学内容,形成完整知识结构,培养归纳概括能力。布置作业巩固加深1.必做题:习题14.1 第2题。2. 勾股定理的证明方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年报审计课件
- 子宫异常出血课件
- 工业煤气知识安全培训
- 工业清洁剂安全培训课件
- 年初安全培训调研内容课件
- 2025年海南省公务员考试真题
- 年会消防安全培训课件
- 绩效管理实务 习题及答案 2绩效计划的制订
- 姿势颈椎病课件
- 酒店实习生实习协议书(新版)5篇
- 乌鲁木齐家乡介绍旅游攻略
- DL∕ T 1060-2007 750KV交流输电线路带电作业技术导则
- 电子元器件的焊接知识大全
- 专业技术人员年度考核情况登记表
- (2024年)羊水栓塞完整版pptx
- 非法侵入住宅谅解书范本
- (高清版)TDT 1071-2022 园地分等定级规程
- 救助管理机构护送服务规范
- 薪酬管理体系建设中的公务员薪酬和绩效奖金
- 胸部保养知识讲座
- 【浙江湖州移动公司行政管理调查报告3100字】
评论
0/150
提交评论