中考数学总复习 第二轮 专题突破 能力提升 专题二 动态几何课件_第1页
中考数学总复习 第二轮 专题突破 能力提升 专题二 动态几何课件_第2页
中考数学总复习 第二轮 专题突破 能力提升 专题二 动态几何课件_第3页
中考数学总复习 第二轮 专题突破 能力提升 专题二 动态几何课件_第4页
中考数学总复习 第二轮 专题突破 能力提升 专题二 动态几何课件_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二轮专题突破能力提升 专题二动态几何 1 如图 P是菱形ABCD的对角线AC上一动点 过P垂直于AC的直线交菱形ABCD的边于M N两点 设AC 2 BD 1 AP x AMN的面积为y 则y关于x的函数图象的大致形状是 C 课前热身 课前热身 2 2016 鄂州市 如图 O是边长为4cm的正方形ABCD的中心 M是BC的中点 动点P由A开始沿折线A B M方向匀速运动 到M时停止运动 速度为1cm s 设P点的运动时间为t s 点P的运动路径与OA OP所围成的图形面积为S cm2 则描述面积S cm2 与时间t s 的关系的图象可以是 A 课前热身 3 2016 龙东地区 如图 MN是的直径 MN 4 AMN 40 点B为AN的中点 点P是直径MN上的一个动点 则PA PB的最小值为 知识类型 运动几何问题的主要类型有点的运动问题 线的运动问题 图形运动问题等 热点知识 考查的知识有三角形的全等与相似 四边形的性质与判定 圆的有关知识 抛物线等函数的有关知识 知识梳理 解题策略 解决这类问题时 不管是点动 线动 图形动都要发挥自己的想象力 不被 动 所迷 应在 动 中求 静 把问题变成静态问题解决 要注意在运动中探究问题的本质 发现变量之间的互相依存关系 知识梳理 一 点的运动问题 例1 如图 在边长为4的正方形ABCD中 点P在AB上从A向B运动 连接DP交AC于点Q 1 试证明 无论点P运动到AB上何处时 都有 ADQ ABQ 2 当点P在AB上运动到什么位置时 ADQ的面积是正方形ABCD面积的 3 若点P从点A运动到点B 再继续在BC上运动到点C 在整个运动过程中 当点P运动到什么位置时 ADQ恰为等腰三角形 典型例题 典型例题 分析 1 根据SAS可证明全等 2 过点Q作QE AB于点F 根据面积先求出QE的长 再由相似求出AP的长即可 3 分三种情况进行讨论 求得BP 或PC 的长 1 证明 在正方形ABCD中 无论点P运动到AB上何处时 都有AD AB DAQ BAQ AQ AQ ADQ ABQ SAS 2 解 ADQ面积恰好是正方形ABCD面积的时 过点Q作QE AD于点E QF AB于点F 则QE QF AE AF AD QE S正方形ABCD QE 由 DEQ DAP 得 解得AP 2 P为AB的中点时 ADQ的面积是正方形ABCD面积的 典型例题 典型例题 3 解 若 ADQ是等腰三角形 则有QD QA或DA DQ或AQ AD 当点P运动到点B时 由四边形ABCD是正方形知QD QA 此时 ADQ是等腰三角形 当点P与点C重合时 点Q与点C也重合 此时DA DQ ADQ是等腰三角形 当点P不与B C重合时 设P在BC边上运动 当CP x时 有AD AQ AD BC ADQ CPQ 又 AQD CQP ADQ AQD CQP CPQ CQ CP x 又 AC 4 AQ AD 4 x CQ AC AQ 4 4 即当CP 4 4时 ADQ是等腰三角形 此时BP 8 4 当点P在BC上运动 BP 8 4时 ADQ是等腰三角形 典型例题 二 线的运动问题 例2 如图a 在 ABC中 点P为BC边中点 直线绕顶点A旋转 若点B P在直线的异侧 BM 直线于点M CN 直线于点N 连接PM PN 1 延长MP交CN于点E 如图b 求证 BPM CPE 求证 PM PN 2 若直线绕点A旋转到图c的位置时 点B P在直线的同侧 其他条件不变 此时PM PN还成立吗 若成立 请给予证明 若不成立 请说明理由 3 若直线绕点A旋转到与BC边平行的位置时 其他条件不变 请直接判断四边形MBCN的形状及此时PM PN还成立吗 不必说明理由 典型例题 分析 1 由直角可以得出BM NC 再利用平行线性质得出 MBP ECP 2 当直线a旋转以后 同样由垂直可以得出MB NC 再通过作辅助线为桥梁转化求证PM PN 3 当直线a与BC平行时 四边形MBCN为矩形 由矩形性质可得PM PN 典型例题 1 证明 BM 直线a于点M CN 直线a于点N BMN CNM 90 BM CN MBP ECP 又 P为BC边中点 BP CP 又 BPM CPE BPM CPE ASA BPM CPE PM PE PM ME 在Rt MNE中 PN ME PM PN 典型例题 2 成立 证明如下 延长MP与NC的延长线相交于点E BM 直线a于点M CN 直线a于点N BMN CNM 90 BMN CNM 180 BM CN MBP ECP 又 P为BC中点 BP CP 又 BPM CPE BPM CPE ASA PM PE PM ME 则在Rt MNE中 PN ME PM PN 3 四边形MBCN是矩形 PM PN成立 三 图形的运动问题 例3 2015 梅州市 在Rt ABC中 A 90 AC AB 4 D E分别是边AB AC的中点 若等腰Rt ADE绕点A逆时针旋转 得到等腰Rt AD1E1 设旋转角为 0 180 记直线BD1与CE1的交点为P 1 如图1 当 90 时 线段BD1的长等于 线段CE1的长等于 直接填写结果 典型例题 分析 利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长 典型例题 2 如图2 当 135 时 求证 BD1 CE1 且BD1 CE1 3 求点P到AB所在直线的距离的最大值 直接写出结果 分析 2 根据旋转的性质 得 D1AB E1AC 135 进而求出 D1AB E1AC SAS 即可得出答案 3 由题意知D1 E1在以A为圆心 AD为半径的圆上 当BD1所在直线与 A相切时 直线BD1与CE1的交点P到直线AB的距离最大 此时四边形AD1PE1是正方形 进而求出P到AB的最大距离 典型例题 2 证明 当 135 时 Rt AD1E1是由Rt ADE绕点A逆时针旋转135 得到的 AD1 AE1 D1AB E1AC 135 在 D1AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论