




免费预览已结束,剩余21页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【备战2013】高考数学 5年高考真题精选与最新模拟 专题17 几何证明选讲 理【2012高考真题精选】(2012辽宁卷)如图18,o和o相交于a,b两点,过a作两圆的切线分别交两圆于c,d两点,连结db并延长交o于点e.证明:(1)acbdadab;(2)acae.(2012江苏卷如图17,ab是圆o的直径,d,e为圆o上位于ab异侧的两点,连结bd并延长至点c,使bddc,连结ac,ae,de.求证:ec.图17【答案】a.证明:如图,连结od,因为bddc,o为ab的中点,(2012湖北卷如图16所示,点d在o的弦ab上移动,ab4,连结od,过点d作od的垂线交o于点c,则cd的最大值为_(2012全国卷)正方形abcd的边长为1,点e在边ab上,点f在边bc上,aebf.动点p从e出发沿直线向f运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点p第一次碰到e时,p与正方形的边碰撞的次数为()a16 b14c12 d10(2012北京卷)如图13,acb90,cdab于点d,以bd为直径的圆与bc交于点e,则()acecbaddbbcecbadabcadabcd2dceebcd2(2012广东卷如图13,圆o的半径为1,a、b、c是圆周上的三点,满足abc30,过点a作圆o的切线与oc的延长线交于点p,则pa_.(2012湖南卷)如图13,过点p的直线与o相交于a,b两点若pa1,ab2,po3,则o的半径等于_(2012课标全国卷如图16,d,e分别为abc边ab,ac的中点,直线de交abc的外接圆于f,g两点若cfab,证明:(1)cdbc;(2)bcdgbd.(2012陕西卷如图15,在圆o中,直径ab与弦cd垂直,垂足为e,efdb,垂足为f,若ab6,ae1,则dfdb_.(2012天津卷)如图13所示,已知ab和ac是圆的两条弦,过点b作圆的切线与ac的延长线相交于点d.过点c作bd的平行线与圆相交于点e,与ab相交于点f,af3,fb1,ef,则线段cd的长为_图13【2011高考真题精选】(2011北京卷)如图12,ad,ae,bc分别与圆o切于点d,e,f,延长af与圆o交于另一点g.图12给出下列三个结论:adaeabbcca;afagadae;afbadg.其中正确结论的序号是()a bc d图12(2011广东卷)如图12,过圆o外一点p分别作圆的切线和割线交圆于a,b,且pb7,c是圆上一点使得bc5,bacapb,则ab_.(2011广东卷)如图13,在梯形abcd中,abcd,ab4,cd2,图13e、f分别为ad、bc上点,且ef3,efab,则梯形abfe与梯形efcd的面积比为_(2011湖南卷)如图12,a,e是半圆周上的两个三等分点,直径bc4,adbc,垂足为d,be与ad相交于点f,则af的长为_【答案】 【解析】 连结ao与ab,因为a,e是半圆上的三等分点,所以abo60,ebo30.因为oaob2,所以abo为等边三角形又因为ebo30,bad30,所以f为abo的中心,易得af.(2011辽宁卷)选修41:几何证明选讲图111 如图111,a,b,c,d四点在同一圆上,ad的延长线与bc的延长线交于e点,eced.(1)证明:cdab;(2)延长cd到f,延长dc到g,使得efeg,证明:a,b,g,f四点共圆(2011辽宁卷) 如图110,a,b,c,d四点在同一圆上,ad的延长线图110与bc的延长线交于e点,且eced.(1)证明:cdab;(2)延长cd到f,延长dc到g,使得efeg,证明:a,b,g,f四点共圆(2011课标全国卷)如图110,d,e分别为abc的边ab,ac上的点,且不与abc的顶点重合图110已知ae的长为m,ac的长为n,ad,ab的长是关于x的方程x214xmn0的两个根(1)证明:c,b,d,e四点共圆;(2)若a90,且m4,n6,求c,b,d,e所在圆的半径图111【解答】 (1)证明:连结de,根据题意在ade和acb中,adabmnaeac, (几何证明选做题)如图15,bd,aebc,acd90,且ab6,ac4,ad12,则be_.【答案】4【解析】 在rtadc中,cd8;在rtadc与rtabe中,bd,所以adcabe,故,becd4.【2010高考真题精选】1(2010年高考天津卷理科14)如图,四边形abcd是圆o的内接四边形,延长ab和dc相交于点p。若,则的值为 。 【答案】【解析】因为abcd四点共圆,所以pcb,cda=pbc,因为p为公共角,所以,所以,设pc=x,pb=y,则有,即,所以=。2. (2010年高考湖南卷理科10)如图1所示,过外一点p作一条直线与交于a,b两点,已知pa2,点p到o的切线长pt 4,则弦ab的长为_.3(2010年高考广东卷理科14)(几何证明选讲选做题)如图3,ab,cd是半径为a的圆o的两条弦,它们相交于ab的中点p,pd=,oap=30,则cp_.【答案】【解析】因为点p是ab的中点,由垂径定理知,.在中,.由相交线定理知,即,所以4(2010年高考陕西卷理科15)(几何证明选做题)如图,已知的两条直角边的长分别为,以为直径的圆与交于点,则. abcdo【解析】(方法一)易知,又由切割线定理得,.于是,.故所求.(方法二)连,易知是斜边上的高,由射影定理得,.故所求.5(2010年高考北京卷理科12)如图,o的弦ed,cb的延长线交于点a。若bdae,ab4, bc2, ad3,则de ;ce 。6(2010年高考江苏卷试题21)选修4-1:几何证明选讲ab是圆o的直径,d为圆o上一点,过d作圆o的切线交ab延长线于点c,若da=dc,求证:ab=2bc。【解析】 本题主要考查三角形、圆的有关知识,考查推理论证能力。(方法一)证明:连结od,则:oddc, 又oa=od,da=dc,所以dao=oda=dco, doc=dao+oda=2dco,所以dco=300,doc=600,所以oc=2od,即ob=bc=od=oa,所以ab=2bc。(方法二)证明:连结od、bd。因为ab是圆o的直径,所以adb=900,ab=2 ob。因为dc 是圆o的切线,所以cdo=900。又因为da=dc,所以dac=dca,于是adbcdo,从而ab=co。即2ob=ob+bc,得ob=bc。故ab=2bc。7. (2010年全国高考宁夏卷22)(本小题满分10分)选修4-1:几何证明选讲如图,已经圆上的弧,过c点的圆切线与ba的延长线交于e点,证明:()ace=bcd;()bc2=bfcd。【2009年高考真题精选】1(2009广东几何证明选讲选做题15)如图4,点a,b,c是圆o上的点,且,则圆o的面积等于 . 13【解析】解法一:连结、,则,则;解法二:,则.2.(2009海南宁夏22)如图,已知的两条角平分线ad和ce相交于h,f在ac上,且ae=af。 (i)证明:b,d,h,e四点共圆; ()证明:3(2009辽宁22) 已知abc中,ab=ac,d是abc外接圆劣弧ac的点(不与点a,c重合),延长bd至e。 (i)求证:ad的延长线平分cde; (ii)若bac=30,abc中bc边上的高为,求abc外接圆的面积。【2008年高考真题精选】1(2008广东,15)(几何证明选讲选做题)已知pa是圆o的切线,切点为a,pa=2,ac是圆o直径,pc与圆o交于点b,pb=1,则圆o的半径r= 。【答案】 【解析】作出图如下。 由切割线定理得pa2=pbpc,pc=4,故填3(2008江苏,21a,10分)如图,设abc的外接圆的切线ae与bc的延长线交于点e,bac的平分线与bc交于点d。 求证:ed2=eceb。4(2008宁夏、海南,22,10分)(选修41:几何证明选讲)如图,过圆o外一点m作它的一条切线,切点为a,过a点作直线ap垂直直线om,垂足为p。 (1)证明:omop=oa2; (2)n为线段ap上一点,直线nb垂直直线on,且交圆o于b点。过b点的切线交直线on于k。证明:okm=90。 又nop=mok,所以onpomk,故okm=opn=905.(2008海南宁夏22)选修14:几何证明选讲如图 ,过圆o外一点m作它的一条切线,切点a,过a点作直线ap垂直直线om,垂足为p.()证明:omop=oa2;()n为线段ap上一点,直线nb垂直直线on,且交圆o于b点,过b点的切线交直线on于k.证明:okm=90【最新模拟】1如图1,点a,b,c是圆o上的点,且ab4,acb45,则圆o的半径r_. 解析:如图2所示,连接oa、ob,则aob90,ab4,oaob,oa2,即r2.答案:2图32如图3,ab、cd是圆o内的两条平行弦,bfac,bf交cd于点e,交圆o于点f,过a点的切线交dc的延长线于点p,若pced1,pa2,则ac的长为_3如图4,已知圆o的半径为3,pab和pcd为圆o的两条割线,且o在线段ab上,若pb10,pd8,则线段cd_;cbd_.图4解析:因为pa102oa4,pcpdpapb40,所以pc5,cdpdpc3,连接oc,od,则ocd为正三角形,所以cod60,则cbd30.答案:330图54如图5,abc的外角eac的平分线ad交bc的延长线于点d,若ab是abc外接圆的直径,且eac120,bc6,则线段ad的长为_解析:因为ab为直径,所以acb90,又eac120,所以bac60,又bc6,得ac2,又acd90,cad60,则在rtacd中可得ad4.答案:4图65如图6,已知点c在o的直径be的延长线上,ca切o于点a,若abac,则_.6如图7,o与p相交于a、b两点,圆心p在o上,o的弦bc切p于点b,cp及其延长线交p于d,e两点,过点e作efce,交cb的延长线于点f.若cd2,cb2,则由b、p、e、f四点所确定的圆的直径为_则在rtfep中,pf,即由b、p、e、f四点确定的圆的直径为.答案:图87如图8,圆o上一点c在直径ab上的射影为d,ad2,ac2,则ab_.8如图9所示,圆的内接三角形abc的角平分线bd与ac交于点d,与圆交于点e,连接ae,已知ed3,bd6,则线段ae的长_.9如图10,正abc的边长为2,点m,n分别是边ab,ac的中点,直线mn与abc的外接圆的交点为p,q,则线段pm_.解析:设pmx,则qnx,由相交弦定理可得pmmqbmma,即x(x1)1,解得x.答案:10如图,a,b是两圆的交点,ac是小圆的直径,d和e分别是ca和cb的延长线与大圆的交点,已知ac4,be10,且bcad,则de_.11如图,过圆外一点p作o的割线pba与切线pe,e为切点,连接ae、be,ape的平分线分别与ae、be相交于点c、d,若aeb30,则pce_.解析:由切割线性质得:pe2pbpa,即,pbepea,pebpae,又pea的内角和为2(cpapae)30180,所以cpapae75,即pce75.答案:7512.如图,在直角梯形abcd中,dcab,cbab,abada,cd,点e,f分别为线段ab,ad的中点,则ef_.13如图,已知abc的两条角平分线ad和ce相交于h,b60,f在ac上,且aeaf.(1)求证:b,d,h,e四点共圆;(2)求证:ce平分def. (2)连接bh,则bh为abc的平分线,所以hbd30.由(1)知b,d,h,e四点共圆,所以cedhbd30.又aheebd60,由已知可得efad,可得cef30,所以ce平分def.14如图所示,o为abc的外接圆,且abac,过点a的直线交o于d,交bc的延长线于f,de是bd的延长线,连接cd.(1)求证:edfcdf;(2)求证:ab2afad.15如图,a,b,c,d四点在同一圆上,ad的延长线与bc的延长线交于e点,且eced.(1)证明:cdab;(2)延长cd到f,延长dc到g,使得efeg,证明:a,b,g,f四点共圆证明:(1)因为eced,所以edcecd.因为a,b,c,d四点在同一圆上,所以edceba,故ecdeba.所以cdab.(2)由(1)知,aebe,因为efeg,故efdegc,从而fedgec.连接af,bg,则efaegb,故faegbe.又cdab,edcecd,所以fabgba,所以afggba180,故a,b,g,f四点共圆16已知,如图,ab是o的直径,g为ab延长线上的一点,gcd是o的割线,过点g作ab的垂线,交直线ac于点e,交ad于点f,过g作o的切线,切点为h.求证:即gcgdgegf.gh为圆的切线,gcd为割线,gh2gcgd,gh2gegf.17.已知四边形pqrs是圆内接四边形,psr90,过点q作pr、ps的垂线,垂足分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脑出血后血压管理策略
- 《婚前财产分割与离婚后子女抚养及赡养责任协议》
- 精装房屋租赁合同附带品牌家电售后服务
- 乡村民宿租赁补充协议范本(民宿特色服务承诺)
- 商铺租赁合同范本:包含装修补贴及违约责任
- 二手房买卖合同签订前的房屋交易市场行情分析及预测
- 离婚股权平分与子女成长基金支付合同范本
- 班组日常现场安全培训课件
- 交警冬季交通安全工作要点
- 鼓励与表扬课件
- 高血钾与急救处理
- ktv陪酒小妹管理制度
- 麻醉期间体温监测
- 公司第三方回款管理制度
- 海上风电场集电线路方案的选择
- 会展经济与管理课件
- 铁塔组立施工方案
- 家庭健康知识课件
- 古茗员工测试题及答案
- 停车场保安门岗岗位职责
- DG-TJ08-2062-2025 住宅工程套内质量验收标准
评论
0/150
提交评论