车辆工程ii-vibration of vehicle system课件_第1页
车辆工程ii-vibration of vehicle system课件_第2页
车辆工程ii-vibration of vehicle system课件_第3页
车辆工程ii-vibration of vehicle system课件_第4页
车辆工程ii-vibration of vehicle system课件_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3VibrationofVehicleSystem Freedoms coordinateandvibrationmodesVibrationofvehiclewithonlysecondarysuspensionMethodofderivingdifferentialequationofvehiclesystemVibrationofvehiclewithwithprimaryandsecondarysuspensions Byzhoujinsong2004TongjiUniversity 3VibrationofVehicleSystem Freedoms coordinateandvibrationmodes Degrees offreedom 1bodywith5dofs 52bogieswith5dofs 104wheelsetswith2dofs 8Total 26 i e 52states 3VibrationofVehicleSystem Freedoms coordinateandvibrationmodes Bodyframe 6DOF Bogieframes 2 6DOF Wheelsets 4 6DOF bounceandrollmodesareconstrainedbyrail SuspensionsWheel railcreepforcesBodyFlexibilitiesOthercomponentsorsub systems 3VibrationofVehicleSystem Freedoms coordinateandvibrationmodes Body x z y pitch lateral 3VibrationofVehicleSystem Freedoms coordinateandvibrationmodes x z y bounce yaw Body 3VibrationofVehicleSystem Freedoms coordinateandvibrationmodes x z y forward Body roll 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibration Topologyrelationsintheresearchedsystem includingconnectinginformation dimension CoordinatesdefinitionPhysicalproperties Whenbuildingsystemmotionequations especiallypayattentiontothefollowingmainpoints 3VibrationofVehicleSystem Plot makecleartheconnectionrelationsbetweeneachpartDefinecoordinatesMarkthephysicalproperties anddimensions accordingly stepsofderivingmotionequationsare TheMostImportantstepistheFirststep whichsimplifytherealsystemandisthebaseoftheoryanalysis VibrationofvehiclewithonlysecondarysuspensionFreeVibration 3VibrationofVehicleSystem UseNewton ssecondlaw yields VibrationofvehiclewithonlysecondarysuspensionFreeVibration 3VibrationofVehicleSystem Withviscousdamperinthesuspension onehas VibrationofvehiclewithonlysecondarysuspensionFreeVibration parameters Mc 36000kgJcy 2300000kg m 2Ksz 0 36e6N mCsz 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibration 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibrationNoviscousdamper stepinputresponse 0 08mStepinput f 0 8554T 1 1690 Csz 0 displacement 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibrationNoviscousdamper stepinputresponse f 0 9632T 1 0382 displacementdisplacement 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibrationNoviscousdamper stepinputresponse c o g Centerplate Responseofthispoint displacement 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibrationviscousdamper stepinputresponse parameters Mc 36000kgJcy 2300000kg m 2Ksz 0 36e6N mCsz 0 08mStepinput 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibrationviscousdamper stepinputresponse Czs 2500Zeta Zc 0 0258 Czs 2500Zeta Phic 0 0291 displacementdisplacement 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibrationviscousdamper stepinputresponse Czs 2500N m s displacementdisplacement 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibrationviscousdamper stepinputresponse Czs 10000N m sZeta zc 0 1034 Czs 10000N m sZeta zc 0 1164 displacementdisplacement 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibrationWithviscousdamper stepinputresponse displacementdisplacement 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionFreeVibrationWithviscousdamper Thesystemstepinputresponseisasfollowing Czs 20000N m s Czs 0N m s accelerationacceleration 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionForcedVibration Where a amplitudew trackirritatingfrequency Lr trackwavelengthV speed 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionForcedVibration Trackcircularfrequency Timedelay Displacementatthecenteroffirsttruckcanbewrittenas Displacementatthecenterofsecondtruck 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionForcedVibration UseNewton ssecondlaw thedifferentialequationsofmotion Simplifyupperequations onehas So yields 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionForcedVibration Parameters Csz 0N m sZt sin t displacementacceleration 3VibrationofVehicleSystem VibrationofvehiclewithonlysecondarysuspensionForcedVibration Parameters Csz 10000N m sZt sin t displacementacceleration 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemMainmethodstoderivethemotionequationareNewton ssecondlawLagrange sequationHamiltons sprincipleInfluencecoefficientmethod Plot makecleartheconnectionrelationsbetweeneverypartDefinecoordinatesMarkthephysicalproperties anddimensions Beforeusethesemethods onestillhastodofollowingworkstodefinethesystem 3VibrationofVehicleSystem Methodsofderivingdifferentialequationsofvehiclesystem Body V 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod Differentialmotionequationsusuallyarewritteninmatrixformasfollowing where M inertiamatrixofsystemC dampingmatrixK stiffnessmatrixF forcematrixAllmatricesaredefinedinthesamecoordinate globalcoordinate influencecoefficientmethoddirectlyderivestheMmatrix C Kmatrix canbeobtainedattheaidofcomputer Farewrittenmanuallylatter 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodFirst derivetheKmatrixdefinecompressingispositive pullingisnegative Generalizedcooridnates stiffnesselements 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod Itscoefficientmatrixis 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod stiffnessmatrixis 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodthen Cmatrixalsodefinecompressingispositive pullingisnegative Generalizedcooridnates dampingelements 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodinertiamatrix inertiaelements Generalizedcooridnates 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod so inertiamatrixis so thefreevibrationmotioneq is 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod whenthereexiststrackirregularity 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod whenthereexiststrackirregularity Trackinput 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod so wecanseethismethodhasverygoodflexibility whenmored o fsandelementsaretobetakenintoconsideration justaugmenttheAmatrix thecomplexityincreasesonlylinearly so thevibrationmotioneq Withtrackirregularityinputisthesameformas note wherethevariablevectoris 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod so motionequationsshouldbewrittenas but thelastfourwheelsetmotionequationsshouldbedeleted becausetheyareconstrained andequaltotrackinputaccordingtoassumption where 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod astotheFmatrix discomposetheforcesactedonvehiclepartsintogeneralizedforces definetheirsignsaccordingtothegeneralizedcoordinates thenFmatrixformed asaexample seethefigureatrightside FeccentricfromcenterlineofcarbodysothematrixFis f l so theforcedvibrationdifferentialeq is 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemLagrange sequation Body V 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemLagrange sequation Asasimpleexample derivethemotioneq Offollowingsystem 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemLagrange sequation Kineticenergy Potentialenergy Dissipationfunction 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemLagrange sequation Kineticenergy potentialenergy 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemLagrange sequation Dissipationfunction so Usethesamemethod wehave 3VibrationofVehicleSystem MethodsofderivingdifferentialequationsofvehiclesystemHamilton sprinciple AnotheralternateapproachforderivingthedifferentialequationsofmotionfromscalarenergyquantitiesisHamilton sprinciple OneofthemostapplicablevariationaltechniqueisHamilton sprinciple whichstatesthat WhereTisthesystemkineticenergy Visthesystempotentialenergy andisthevirtualworkofnonconservativeforces 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Body V 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Asanalternativemethod thetraditionalNewton ssecondlaw sareusedtoderivethemotionequationsasthetextbookdemonstrates themotionequationsare Simplifyas 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Where 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Considerthecarbodyandtruckmotionequations theyarecoupled soareanalyzedtogether Body Zt Mc Mt 4Ksz 8Kpz where Zc 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Theirsolutionsareassumedas Body Zt Mc Mt 4Ksz 8Kpz A B amplitudeofcarbodyandtruck psystemnaturalfrequency alphi phaseangle Substitutethesolutionintomotionequations yields Zc Characteristicfunctions SamewiththeSDOFsystem onehas 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Twod o fs therearetwonaturalfrequencies Solvethecharacteristicfunctions theloweroneis Body Zt Mc Mt 4Ksz 8Kpz Zc Theotheroneis 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Solutionare Body Zt Mc Mt 4Ksz 8Kpz Zc Modeshape Lowfrequency Highfrequency Atlowfrequency 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Body Zt Mc Mt 4Ksz 8Kpz Zc 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Body Zt Mc Mt 4Ksz 8Kpz Zc Asanexample aVehicleparameters Mc 36000kgMt 2100kgKsz 260000N mKpz 300000N m Whenzt1 0 0 02 zt2 0 0 02 zc 0 02 3 0670 thesimulationresultinmatlab simulinkisasfollowing fst1 0 1641m fst2 0 3392fst fst1 3 0670 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Carbodyverticaldisplacement Truckframeverticaldisplacement 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Truckframeverticalacceleration 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping V 0 08mStepinput Theresponseisasfollowing 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Carbodyverticaldisplacement Carbodypitchangleresponse 3VibrationofVehicleSystem VibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration withoutviscousdamping Truckframeverticaldisplacement Truckframepitchangleresponse IncludingthreefrequenciesinthewaveWhy 3VibrationofVehicleSystem Multi DegreeofFreedomSystem Inthecaseofundampedfreevibrationofmulti degreeoffreedomsystems Assumeasolutionintheform Substitutetheupperformintothefirstequation leadto Whichleadsto Ascomparing standardeigenvalueproblemistheformasfollowing 3VibrationofVehicleSystem Multi DegreeofFreedomSystem Thisequationhasanontrivialsolutionifandonlyifthecoefficientmatrixissin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论