H型PWM数字直流调速系统设计(正文).doc

DZ194H型PWM数字直流调速系统设计

收藏

压缩包内文档预览:(预览前20页/共55页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:512176    类型:共享资源    大小:7.68MB    格式:RAR    上传时间:2015-11-11 上传人:QQ28****1120 IP属地:辽宁
6
积分
关 键 词:
毕业设计
资源描述:
DZ194H型PWM数字直流调速系统设计,毕业设计
内容简介:
长春工业大学学生毕业论文 1 第一章 绪论 1.1 问题的提出 为什么我们要研究一种由计算机系统控制的 PWM 直流控制系统?要回答这个问题,首先我们应该系统的论述一下电动机转速控制系统的发展历程及现状。 电动机按电源供应方式来分,可以分为两大类,即直流电动机和交流电动机。两类电动机在调速方面存在着很大差异。直流电动机具有良好的起、制动性,适宜在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域得到了广泛应用。即便如此,直流电动机也存在着固有的很多缺点,制约了其应用 由于直流电动机使用直流电源,它的碳刷和滑环都要经常更换,这样的 拆换工作是费时费力费财的,无疑会加重使用者的负担。因此,人们希望简单可靠低廉的交流电动机也能像直流电动机那样调速。定子调速、变极调速、滑差调速和转子串电阻调速和串极调速等调速方法应运而生,同时,由于技术的成熟,滑差电动机、绕线式电动机、同步式交流电机等随即出现,带来了电机史上的一次飞跃。但是,这些电动机的调速性能仍然不能与直流电动机相比。直到 20 世纪 80 年代,变频调速的出现才解决了直流电机调速性能好却费时费力的缺点。那么又是什么促成了变频调速的产生呢? 电力电子技术、微电子技术和信息技术的产生与发展,直接推 动了变频调速系统的产生。由于变频调速具有其他调速方式所不具有的几大特点: 1) PWM 调速系统主电路线路简单, 需用 的功率器件少 2) 开关频率高,电流容易连续,谐波少,电机损耗及发热都较小 3) 低速性能好,稳速精度高,调速范围广,可达到 1: 10000 左右 4) 如果可以与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强 5) 功率开关器件工作在开关状态, 导通 损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高 6) 直流电源采用不 可 控整流时,电网功率因数比相控整流器高 变频调速很快为广大电动机用户所接受,成为了一种最受欢 迎的调速方法,在一些中小容量的动态高性能系统中更是已经完全取代了其他调速方式。由此可见,变频调速是非常值得自动化工作者去研究的。在变频调速方式中, PWM 调速方式尤为大家所重视,这是我们选取它 作为 研究对象的重要原因。 而在众多 PWM 变换器实现方法中,又以 H 型 PWM 变换器更为多见。这种电路具备电流连续、电动机四象限运行、无摩擦死区、低速平稳性好等优点。因此,本次设计以 H 型 PWM 直流控制器为主要研究对象。 nts长春工业大学学生毕业论文 2 要研究 PWM 调速方法,不能不提到微电子技术、电力电子技术和微机控制技术,没有这些技术的支持,我们就只 能还是在走前人的老路,被模拟、人工控制的思维所禁锢。在电动机转速控制领域,如果不能有效的引用这些技术,我们很难有所突破,发现问题,进而有所进步。 微机控制技术的发展也就是计算机控制系统的发展历程。它的发展大体可以分为三个阶段:第一个阶段是 1965 年后的实验阶段,自从 1952 年计算机被应用于生产过程中后,它应用于生产领域并创造巨大价值的潜力立刻为世人所注意,进而被大面积研究试用起来。 1959 年,美国得克萨斯州的一家炼油厂成功建成了世界上第一个计算机控制系统,标志着这项技术的发展已经开始。第二个阶段是 1965 年 到 1972 年间的实用阶段。在这段时间里,计算机控制系统开始从单项工程试验中迈向实用,并且得到了系统的完善。在这一时期,计算机集中控制得到认可。在高度集中控制时,若计算机出现故障,将对整个生产产生严重影响。为了应对这种负面影响,人们采取了多机并用的方案,促进了计算机控制系统的进一步发展。第三个阶段是从 1972 年至今,在这个阶段才真正出现了微机的概念,以它为核心,衍生出了很多计算机控制系统,如操作指导控制系统、直接数字控制系统、监督计算机控制系统以及分布式控制系统,而随着微电子技术的发展,计算机控制系统可以实现 小物起大用的效果,既不占空间,又可以同时处理很多生产问题,省时省力,计算机控制技术走向了成熟。而随着嵌入式系统的发展,计算机控制系统开始向网络化变迁,相信会有更大的发展空间。 电力电子技术 作为 电源技术产业的支柱性领域,也已经经过了漫长的发展历程。这些技术如果都能被应用到 PWM 调速系统的控制当中,势必会使得调速系统的性能有一个很大的提升。在调速技术走到这个类似瓶颈地步的今天,这种尝试无疑是一种很有潜力的设想。 至于系统应该如何构成,系统的实际应用效果会如何,这些都是很需要探讨的问题,那么,这个研究就是很必要的 了,也是我写这篇论文阐述探讨结果的理由。 1.2 国内外的研究现状 做这项研究的人是不在少数的。他们的研究方法是大同小异的,基本的设计思路是一脉相承的大体可以归纳如下:计算机控制直流电动机调速系统被理解为一个以计算机为控制核心的闭环控制系统,当系统的给定转速发生变化的时候,系统通过速度检测环节,检测当前的转速,经信号变换、放大等环节,把反馈信号转换成数字信号送入计算机,计算机定时对速度信号采样,将采集后的被控量进行分析、比较和处理,按一定的控制规律运算,进行控制决策、实时输出控制量,通过计算机输出通道对直流 电动机控制电路发出控制信号,使电动机的速度按要求发生变化,完成对电动机的控制任务。这类控制思路可以体现到下面的原理框图中: nts长春工业大学学生毕业论文 3 图 1.1 计算机控制直流电动机调速系统原理框图 可以看出,在这种方法中,存在很多可以借鉴的地方。在这个系统中采用了闭环控制,以数字化、集成化为设计原则,系统采用 SCC+DCC 的模式来控制。在系统中,以两级计算机控制系统,上位机的任务是实现系统的控制和管理,下位机用做数据采集,并直接选择了数字控制。这样做有很大的优势,无形中提高 了系统的协调性,减少了很多繁杂的外围硬件外设的干扰,减少了故障绿和提高了设计精度。在本次的设计中,我们借鉴了这类系统的很多原理。 计算机控制系统控制效果的优劣,主要取决于采用的控制策略和控制算法是否合适。控制算法的选择和系统的数学模型有关,因此建立数学模型是必要的。这次设计也不例外,在后面的介绍中,我们会详细介绍系统的数学模型。 目前,高频电压领域的具体发展状况基本情况是这样的。目前已经提到并得到应用的 PWM 控制方案就不下于数十种,尤其是微处理器应用于 PWM 技术数字化后,花样是 不断翻新,从最初追求电压波形的 正弦,到电流波形的正弦,再到磁通的正弦;从效率最优,转矩脉动最少,再到消除噪音等, PWM控制技术的发展经历了一个不断创新和不断完善的过程。目前仍有新的方案不断提出,这说明该项技术的研究 方兴未艾。不少方法已经趋向于成熟,并有许多已经在实际中得到应用。 PWM控制技术一般可分为三大类,即正弦 PWM、优化 PWM及随机 PWM,从实现方法上来 看,大致有模拟式和数字 式两种,而数字式中又包括硬件、软件或查表等几种实现方式,从控制特性来看主要可分为 两种:开环式(电压或磁通控制型)和闭环式(电流或磁控型)。 随着计算机技术的 不断进步,数字化 PWM 已逐步取代模拟式 PWM,成为电力电子装置共用的核心技术。交流电机调速性能的不断提高在很大程度上是由于 PWM技术的上位计算机 下位计算机 输出通道 输入通道 驱动电路 驱动电路 同步触发电路 F/V转换功率放大 控制主电路 光电转速测量 直流电动机 nts长春工业大学学生毕业论文 4 不断进步。目前广泛应用的是在规则采样 PWM 的基础上发展起来的准优化 PWM法,即三次谐波叠加 法和电压空间矢量 PWM法,这两种方法具有计算简单、实时控制容易的特点。 变频调速技术的现状具有以下特点: 1) 在功率器件方面,近年来高电压、大电流的 SCR、 GTO、 IGBT、 IGCT等器件的生产 以及并联、串联技术的应用,使高电压、大功率变频器产品的生产以及应用成为现实。 2) 在微电子技术 方面, 16 位、 32 位高速微处理器以及 DSP 和 ASIC(专用集成电路 Application Specific IC) 技术的快速发展,为实现变频器高精度、多功能化提供了硬件手段。 3) 在控制理论方面,矢量控制、磁通控制、转矩控制、智能控制等新的控制理论为 研制高性能变频器的发展提供了相关理论基础。 4) 在产品化生产方面,基础工业和各种制造业的高速发展,促进了变频器相关配套 件的社会化、专业化生产。 国内外高压变频器的分类、比较和应用情况: 目前世界上的高压变频器不象低压变频器一样具有成熟的一致性的主电路拓扑结构,而是 限于功率器件的电压耐量和高压使用条件的矛盾,国内外各变频器生产厂商,采用不同的功率器件和不同的主电路拓扑结构,以适应不同的电压等级和各种拖动设备的要求, 因而在各项性能指标和适用范围上也各有差异。 一般来讲,在高压供电而功率器件耐压能力有限的情况下,可采用将功率器件串联的方法来解决。但是功率器件在串联使用时,因为各器件的动态电阻和极间电容不同,而存在静态均压和动态均压问题。如果采用与器件并联 R 和 Rc 的均压措施,会使电路复杂,损耗增加;同时,器件的串联对驱动电路的要求也大大提高,要尽量做到串联器件同时导通和 关断 ,否则由于各期间开断时间不一 定 ,承受电压不均,会导致器件损坏设置整个装置崩溃。 根据高压变频器有无直流环节,可以分为交 交变频器和交 直 交变频器;根据直流环节滤波元件的性质又可以分为电流源型变频器和电压源型变频器;电流源型变频器又可以分为负载换流式晶闸管变频器( LCI)和采用自关断器件( GTO、 SGCT)的电流源型变频器;电压源型变频器则可以分为: 1) 功率器件串联二电平直接高压变频器 2) 采用 HV IGBT、 IGCT的多电平电压源变频器 3) 采用 LV IGBT 的单元串联多重化电压源变频器等,如图 1.1 所示。 nts长春工业大学学生毕业论文 5 高压变频器交 - 交 变 频 器 ( 周 波换 流 器 C Y C L D )交 - 直 - 交 变 频 器矩 阵 变 频 器电 流 源 型 变 频 器电 压 源 型 变 频 器负 载 换 流 型 变频 器 ( L C I )可 关 断 器 件电 流 源 型 变频 器功 率 器 件 串 联 直 接 高压 二 电 平 变 频 器多 电 平 变 频器三 电 平 变 频器四 电 平 变频 器五 电 平 变频 器单 元 串 联 多 重 化 变 频 器变 压 器 耦 合 输 出 变 频 器1.1 高压变频器分类 上世纪 末 以前,高压大功率变频器都采用国外进口品牌。如美国罗克韦尔公司的Power FlexTM7000高压变频器,是采用 SGCT 功率器件串联的交一直一交电流源型变频器, 与电动机的特性有关,调试比较困难;并且 du/dt比较大,对电机的绝缘影响较大。是进入我国火电厂节能改造功能最早的产品。 美国罗宾康( ROBICON)公司的单元串联多电平 变频 器,采用低压 IGBT 功率器件,号称完美无谐波变频器。也是进入我国较早,且使用最多的产品。它的优点是电压电流波形好,谐波含量小,对电动机影响小。欧洲 ABB 公司的 ACS1000高压 变频器,是采用 IGCT器件的三电平变频器,最高电压到 4.16kV。若用在我国 6kV 高压电动机上,要进行星 角改接,不利于进行工频旁路切换(切换前要先进行角 星形改接 ),所以 限制了它在我国火电厂的使用。目前在我国发电厂使用量很少。 德国西门子公司的 SIMOVERT MV 系列高频变压器, 6KV 电压可做到 2000KW。它实际上采用的是 高一低一高方式。其核心的逆变器是采用高压 IGBT 器件的三电平变频器,输出电压为 2.3kV,通过一个 “ 集成升压滤波器 ” 将电压升到 6kV,并兼有滤波作用。也是进入我国 较早的产品,目前使用量已超过 200台套。 法国阿尔斯 通公司的 ALSPA CDM6000 系列高压变频器,是采用 IGBT 器件的飞跨电容四电平变频器,可四象限运行,输出波形较好,谐波含量和 du/dt 较小( du/dt 500V/us)。在冶金、矿山使 用较多,在我国电厂使用很少。 国外产品的共性是质量好,可靠性高,但价格也很高,且对我国电网的适应能力差,用户界面差(未汉化),售后服务响应差。备品备件供应差且价格昂贵。以上因素给国内用 户带来很大的不便。 nts长春工业大学学生毕业论文 6 进入新世纪以来,国产高压变频器企业迅速崛起,并以惊人的速度占领市场。北京利德华福公司的高压变频器销售业绩,到 2006 年 6 月份已突破 600 台套。还有成都东方日立(原东方凯奇)公司,北京合康亿盛公司、山东新风光公司、成都佳灵公司、中山明扬公司、哈尔滨九洲 公司、广州智光公司、上海科达公司、深圳的微能科技和康沃公司等也都先后进入这个领域,并且必然会有更多的企业加入进来。这将对我国高压变频器品牌占领国内 市场起到积极的作用。并为我国创建节约型社会送来强劲的东风。 国产品牌在可靠性和生产工艺上正在迎头赶上,其最大的优势是适合中国国情和用户的需要,可以进行特殊设计,用户界面友好,操作方便,价格便宜。最主要的是良好的售前售后服务和备品备件的提供,以及操作维护人员的培训工作,更是国外品牌的产品所无法比拟 的。 在上世纪 末 ,用户是唯进口品牌是论,根本不考虑国产品牌,而现在情况 正好反过来了,许多用户主动要求选用国产品牌,而不要进口品牌。国外的高压变频器生产公司为了占领中国市场,也都纷纷在国内设立组装厂,象进线变压器等也由国内配套厂提供,产品的设计也越来越适应中国用户的要求,价格也有所下降。国内的产品大多数采用单元串联多电平电路,也有少数采用三电平电路和功率器件直接串联二电平电路的。对于我国目前以节能为目的的用户来说,单元串联多电平电路,在性能上还是占有一定优势的。随着使用领域的 扩大,还有待于开发出性能更好的产品来。 目前国内投运的高压变频器已接近 3000 套,大多来自 西门子公司 、罗 克韦尔( AB)公司、 ABB公司、利德华福公司、东方日历公司、中山明阳龙源公司、哈尔滨九州公司、成都佳灵公司、山东新风光、上海科达公司、广州智光公司、湖北三环公司几家公司,在几家公司中,中外方变频器的使用套数比例基本平衡,可见国内在这个领域的生产能力还是不差的,不过,在效率方面还是有待提高。 目前在变频器领域的几项重点技术都是比较有发展潜力的: 1) 矢量控制技术 2) 无速度传感器矢量控制技术 3) 直接转矩控制技术 4) PWM控制技术 5) 数字化控制技术 6) 自整定技术 7) 交流传动系统的智能控制 高压变频调速技术的发展趋势: 20 世纪末,交流电动机变频调速技术以电力电子功率变换技术、微电子控制技术为 核心得到了惊人的发展,展望 21 世纪,变频调速技术将会有更大发展。 这种发展趋势大体可发为以下几点: nts长春工业大学学生毕业论文 7 1) 功率变换器的高频低损耗化、自关断化、模块化、高耐压、大容量化 2) 矩阵变频器的出现和推广 3) 变频器在同步电动机的应用 4) 控制技术的数字化、矢量控制化、直接转矩控制化 5) 无速度传感器矢量控制化 6) 操作系统的网络化 7) 硬件通用化、调试维护软件化 8) 变频装置无谐波化,采用多电平、多 重化、带就地补偿 9) 工作负荷参数的模型化 10) 新理论新机理新材料的出现将出现新概念功率变换期间、新概念变频装置 下面对此做专门介绍。 1) 在开关器件方面: IGBT变频器已成为 20世纪 90年代变频调速技术的主流,在 21世纪初相当长的一段时间内仍将是电气传动领域的主导变频器。在 21世纪, IPM及智能化变频器将会有很大的发展。功率变换、驱动、检测、控制、保护等功能的集成化促成了功率器件及变频器的智能化,实现高效节能、多功能、高性能、高附加值,同时将研究开发新电力电子器件 IGCT、 IEGT(集成发射式门极晶 闸管 Integrated Emit Gate Thyristor)、 GaAs(砷化镓)、 SiC(碳化硅复合器件)、光控 IGBT及超导功率器件等新功能变频器。 2) 在变频电路拓扑结构方面:基于双 PWM能量回馈的绿色变频电路是变频调速技术的发展趋势,即整流部分也采用电力电子自关断器件构成,并对其进行 PWM控制。一方面使交流输入电流波形为正弦,且功率因数为 1;另一方面实现能量向电网回馈,保证变频器四象限运行。除此之外, PWM整流电路还有助于减小直流环节滤波电容的容量,随着电力半导 体器件性能的不断提高和价格的不断 下降,这种结构会得到广泛地推广和应用。 3) 在变频控制电路方面:现在变频装置几乎已实现了数字化控制,但控制技术的微电子数字化仍是今后的发展趋势。变频装置的数字化技术是从 20 世纪 80年代中期开始逐步 发展到 16 位、 32位微处理器,目前普遍采用 DSP。 4) 矢量控制技术及直接转矩控制技术:矢量控制依然是高性能交流电机调速系统的主流控制策略。它所包涵的关键技术有:控制理论和方法,如 PWM 技术,磁通的观测,速度辩识,无速度传感器控制;电机铁损补偿,参数辩识,参数变化的补偿;主电路使用新型电力半导体器件,提高开关频 率,改善电压或电流波形,同时使用微电子技术所提供的 DSP、 CPU、 ASIC等。 通过网络设定频率是一种高精度的频率设定,其具有 通讯 速率高,稳定可靠,接线简单等优点,而且在模拟量控制时,输出端经过一个数模转换器,经过导线,进入输入端(变频器)又经过一个模数转换器才能参与控制,两个转换器位数不同和导线nts长春工业大学学生毕业论文 8 损耗都可能造成一定误差,而 通讯 传递直接是数字量不需要转换,没有误差,在传输过程中不会造成损耗,而且 响应速度也会很高。 变频器经常被用于系统复杂、工作环境恶劣、高负荷、长时间运行的工况中,如无人值守泵站、油田磕头机等 。变频器故障率在这种环境中自然比较高,一般都采取事后维修的方式进行,随着电子技术的发展,传统的维修方式将变为故障预报和整机在线维修。有必要对其实现在线工作状态的监测以及常规故障机理的综合分析研究,以便对其故障的事先诊断分析。目前大功率变频器的故障诊断、远程监控系统及智能控制方面取得了较大的进展,在网络化日益普及的今天,与普通的点对点硬线连接方式而言,通过高速 通讯 连接的变频器系统可以最大程度上降低系统维护时间、提高生产效率、减少运行成本。目前安装的现场总线模块有 Profibus DP、 Interbus、DeviceNet、 CAN Open 和 Modbus Plus等。用户可以有更大的自由根据生产过程来选择 PLC型号和品牌,并非常简单地集成到现有的网络中去。而且通过现场总线模块,可以不考虑变频器的型号,而以同一种语言来与不同功率段、 不同型号的变频器进行组构,如功率、速度、转矩、电流、设定值等。 交流同步电动机已成为交流可 调速 传动中的一颗新星,特别是永磁同步电动机。电机是无刷结构,功率 因数高、效率也高,转子转速严格与电源频率保持同步。同步电机变频调速系统有他控变频和自控变频两大类,自控变频同步电机在原理上和直流电机极为相似,用电力电子变流器取代了直流电机的机械换向器,如采用交 -直 -交变压变频器时叫做 “ 直流无换向器电机 ” 或称 “ 无刷直流电动机 ” 。传统的自控变频同步机调速系统有转子位置传感器,现正开发无转子位置传感器的系统,且已经取得重大进步和在市场的成功应用。同步电 机的他控变频方式也可采用矢量控制,其按转子磁场定向的矢量控制比异步电机更为简单。 PWM系统由于产生及发展了很短时间,所以仍旧存 在不少有待改进的地方,具体表现为以下几点: 1)应该进一步扩大晶体管 PWM 驱动装置的容量,使之能达到 100KW 以上,复合型大功率晶体管的出现,使之成为可能。 2)研究大功率晶体管工作状态检测电路,使之保证在开关状态下安全工作。 3)晶体管 PWM 驱动装置中最容易出现的严重问题是大功率晶体管的二次击穿与短路烧毁,应研究合理的驱动方式、恰当的保护方式以及参数计算方法。 4)开展微处理器在 PWM系统中的应用研究。 5)就 PWM 控制原理本身来说,它是具有继电特性的本质非线性控制,严格的说,直流 PWM系统是一种典型的非 线性控制系统,为了使这种非线形系统有良好的工作特性,需对由非线性引起的一些特殊问题,如自激振荡、线性化的条件等进行深一步的研究。 6) PWM控制的特点就是开关控制,电池兼容性问题是工程实用中至为重要的问题。 nts长春工业大学学生毕业论文 9 1.3 本 课题的设计要求和技术指标 1.3.1 本课题的设计要求和技术指标 本文研究目的是为了设计一个以微型计算机控制的 PWM变频调速系统,其具体参数要满足以下条件: 1) 2.2Kw电动机 ,额定电压为 220V,额定电流为 12.5A,额定转速为 1500r/min,励磁电阻为 1欧姆 2) 静态指标: 稳 态无静差,调速范围 D 1000,动态指标:转速无超调 3) 自动实现双极式、单极式、受限单极式控制方式的转换 4) 具有键盘数据和转速、电流的指示功能 5)具有故障处理和报警功能 1.3.2 本文研究内容 本论文试图在变频调速领域内探讨出利用计算机控制的 PWM直流控制系统,当然,以此为基础,必须要将变频调速的基本原理阐述明白。那么,本文试图将下面问题阐述明白: 1) 变频调速的基本原理 2) 变频调速与其他调制方式的优越之处 3) 计算机控制系统的构成与基本原理 4) 计算机控制的 PWM直流调速系统的构成 5) 电流检测、电压检测、温度检 测、显示电路、键盘电路等环节的研究 nts长春工业大学学生毕业论文 10 第二章 系统总体论证 2.1 基础理论 2.1.1 直流调速的分类 直流电动机的调速系统有很多种类。调速即速度的控制,是指在直流传动系统中通过各种手段改变电动机转速来满足系统的要求。在机械特性上来说,就是通过改变电动机参数使机械特性发生改变,使电动机转速发生改变,以此满足要求。 直流调速的分类可以分为以下三种: 1) 无级调速和有级调速 无级调速,也即连续调速,是指电动机的转速可以平滑的调节。其特点为:转速变换均匀,容易实现调速自动化,是工业装置中广泛采用。有 级调速,也就是间接调速或分级调速,转速只有有限的几级,不能在范围内任意调制,很难实现调速自动化。 2) 基速向上调速和基速向下调速 电动机有一个固有转速,也就是电动机额定负载时的额定转速,这个转速是调速的基础点,所以称为基本转速或基速。那么,基速向上调速和基速向下调速的意义就是在基速向上或向下提高转速的调制。基速极限受电动机机械强度和换向条件限制。基速向上调速的典型实例是直流电动机改变磁通进行调速。基速向下调速的典型实例是改变直流电动机的电枢电压进行调速,调速的极限即最低转速,主要受转速稳定性的限制。 3) 恒转矩调速 和恒功率调速 恒转矩调速是一种普遍 应用 的负载性质。它的意义是调速过程中不同的稳定速度下,电动机的转矩为常数。 如果选择的调速方法能使电磁转矩 T I=常数,则在恒转矩负载下,电机无论在高速或低速下运行,其发热情况始终是一样的。这就使电动机容量能得到合理而充分的利用。这种方法称为恒转矩调速。它的典型应用为磁通一定时,调节电动机的电枢电压或电枢回路电阻的方法。 具有恒功率特性的负载是指 调速过程中负载功率 PL为常数负载,其负载转矩 TL=( 1/n)(为励磁调节系数),在这种负载下,采用恒转矩调速方法,使调速过程保 持 Te I,那么,在不同转速时,电动机电流将不同,并在低速时电动机必定过载。解决办法就是保持调速过程电流恒定,要保持功率 I,这种调速方法就是恒功率调速。对于直流电动机,当电枢电压一定时,减弱磁通的调速方法属于恒功率调速。还存在一个问题就是,用恒功率调速方法去带动恒转矩负载也是不合理的。在高速时电机将会过载。 2.1.2 调速的基本方式 nts长春工业大学学生毕业论文 11 直流电动机转速 n的变化可用下式表示: n=U -RT/CeCT 2 ( 2-1) 式中: U 电枢电压; R 电枢回路电阻; 励磁磁通; Ce 与电机结构相关的电动势常数; CT 转矩常数; T 电动机电磁转矩。 由公式( 2-1)知道,实现调节电动机转速 n的方法是改变电枢回路电阻 R,减弱励磁磁通 ,调节电枢电压 U。 有以下几种调速方法,下面做具体解释。 2.1.2.1 改变磁通调速 1)调速的方法 在电动机励磁绕组电路中,改变其串励电阻 Re的大小(见图 2-2)可以改变励磁电流和磁通,此时电动机的电枢电压通常为额定值 UN,而且不串附加电阻 1、 21。 改变 磁通调速的机械特性方程式为 n=UN/Ce -Ra/CeCT 2=UN/CE -RaI/CE ( 2-2) 从机械特性方程式可以看出,当改变时, n 变, n 也变。当磁通减弱时,理想空载转速 N0增加,机械特性斜率随着磁通减弱而急速增加, N=0 时的转矩(堵转转矩) TLr 随减弱而减小( TLr=UNCT /Ra),但此时的电流(堵转电流) TLr=UNCT /Ra却与没有关系,因此,转矩已不与电流成正比了。在调速过程中,为使电动机容量得到充 分利用,应该使电枢电流一直保持在额定电流 IN,这时磁通与转速成正比: =( UN-INRa) /CeN 1/N ( 2-3) 故 T=CT IN 1/n (2-4) 上式可以看出,转矩也与转速成正比,即保持电枢电流 I=IN=常数,磁通与转速的关系为双曲线,因此,改变磁通调速适合于带恒功率负载,实现恒功 率调速。 图 2-1 串联电阻调速 2) 调速的优缺点 nts长春工业大学学生毕业论文 12 弱磁调速时应使电动机电压保持额定值 UN, Ra应为最小(切除所有附加电阻)。一般不能在电枢回路串有外加电阻,且降低外加电压的低速大负载下用减弱磁通来升速。 通常 Nn以上靠减弱磁通来调速。注意磁通减小时, In不变,但 Tn减小,转速 n升的越高, Tn减小越多。 弱磁调速,在高速下由于电枢电流去磁作用增大,使转速特性变得不稳定,换向性能也会下降。因此,采用改变磁通来调速的范围是有限的。对于普通电动机的调速范围,最多为 D=2;对于特殊设计的额定转速较低的调磁电动机 D=3-4。 弱磁调速的优点是:因为调节是在功率较低的励磁电路中进行,励磁电流只有电枢电流的 2%-5%,故控制方便,能量损耗小,调速平滑性较高。 弱磁调速的最大问题就是其可靠性,如果他励直流电动机在运行过程中,励磁电路突然断线,就会变成很小的剩磁,此时电枢电流大大增加,更会由于严重弱磁,使转速急剧上升可能,把整个电枢破坏,因此必须有相应的保护措施。 2.1.2.2 改变电枢回路串联电阻调速 1)调速情况分析 由直流电动机的调速公式( 2-5)知道,当电枢回路串联 附加电阻 Rs(由 R1、 R2构成)时,其特性方程式变为 n=U/ Ce -(Ra+Rs)T/ CeCT 2=n0- t ( 2-5) 见图 2-1。 图 2-2直流电动机改变 Rs调速电路 由图知,电枢电路串电阻调速的物理过程:电动机在一个状态稳定运行时,电枢串接电阻 Rs,接入电阻瞬间,由于拖动系统的机械特性,转速 n 来不及变化,则电枢电流减小,则电动机的状态发生变化,产生过度,此时 TT/2,则 Uab 的平均值为正,电动机正转,反之则反转;如果正、负脉冲相等, ton=T,平均输出电压为零,电动机停止。在 2-9 中表示出了电动机正转时的情况。 双极式控制可逆 PWM 变换器的输出平均电压为 Ud=(2ton/T-1)Us ( 2-11) 若占空比 =ton/T ( 2-12) 与电压系数 定义与不可逆变换器中相同,则在双极式控制的可逆变换器中 =2 -1 ( 2-13) nts长春工业大学学生毕业论文 20 就和不可逆变换器的关系不一样了。 调速时, 的可调范围为 01,相应的 , =-1+1。当 0.5 时, 为正,电动机正转;当 T1时, V0, 50% 电机正转 T2 #include #include #include UPSD3200.H #include upsd_pwm.h #define uint unsigned int #define uchar unsigned char PSD_REGS PSD8xx_reg _at_ csiop; nts长春工业大学学生毕业论文 54 #define
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:DZ194H型PWM数字直流调速系统设计
链接地址:https://www.renrendoc.com/p-512176.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!