

免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时 二次函数y=ax2+k的图象和性质教学目标: 1、使学生能利用描点法正确作出函数yax2b的图象。2、让学生经历二次函数yax2bxc性质探究的过程,理解二次函数yax2b的性质及它与函数yax2的关系。重点难点:会用描点法画出二次函数yax2b的图象,理解二次函数yax2b的性质,理解函数yax2b与函数yax2的相互关系是教学重点。正确理解二次函数yax2b的性质,理解抛物线yax2b与抛物线yax2的关系是教学的难点。教学过程:一、提出问题1二次函数y2x2的图象是_,它的开口向_,顶点坐标是_;对称轴是_,在对称轴的左侧,y随x的增大而_,在对称轴的右侧,y随x的增大而_,函数yax2与x_时,取最_值,其最_值是_。2二次函数y2x21的图象与二次函数y2x2的图象开口方向、对称轴和顶点坐标是否相同?二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究? (画出函数y2x2和函数y2x2的图象,并加以比较) 问题2,你能在同一直角坐标系中,画出函数y2x2与y2x21的图象吗? 教学要点 1先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y2x2的图象。 2教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y2x21的对应值表,并让学生画出函数y2x21的图象 3教师写出解题过程,同学生所画图象进行比较。 解:(1)列表:x3210123yx2188202818yx211993l3919 (2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑曲线顺次连接各点,得到函数y2x2和y2x21的图象。(图象略) 问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系? 教师引导学生观察上表,当x依次取3,2,1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y2x21的函数值都比函数y2x2的函数值大1。 教师引导学生观察函数y2x21和y2x2的图象,先研究点(1,2)和点(1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y2x21的图象上的点都是由函数y2x2的图象上的相应点向上移动了一个单位。 问题4:函数y2x21和y2x2的图象有什么联系? 由问题3的探索,可以得到结论:函数y2x21的图象可以看成是将函数y2x2的图象向上平移一个单位得到的。 问题5:现在你能回答前面提出的第2个问题了吗? 让学生观察两个函数图象,说出函数y2x21与y2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y2x2的图象的顶点坐标是(0,0),而函数y2x21的图象的顶点坐标是(0,1)。 问题6:你能由函数y2x2的性质,得到函数y2x21的一些性质吗? 完成填空: 当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大,当x_时,函数取得最_值,最_值y_ 以上就是函数y2x21的性质。三、做一做问题7:先在同一直角坐标系中画出函数y2x22与函数y2x2的图象,再作比较,说说它们有什么联系和区别? 教学要点 1在学生画函数图象的同时,教师巡视指导; 2让学生发表意见,归纳为:函数y2x22与函数y2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y2x22的图象可以看成是将函数y2x2的图象向下平移两个单位得到的。 问题8:你能说出函数y2x22的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗? 教学要点 1让学生口答,函数y2x22的图象的开口向上,对称轴为y轴,顶点坐标是(0,2); 2分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大,当x0时,函数取得最小值,最小值y2。 问题9:在同一直角坐标系中。函数yx22图象与函数yx2的图象有什么关系? 要求学生能够画出函数yx2与函数yx22的草图,由草图观察得出结论:函数y1/3x22的图象与函数yx2的图象的开口方向、对称轴相同,但顶点坐标不同,函数yx22的图象可以看成将函数yx2的图象向上平移两个单位得到的。 问题10:你能说出函数yx22的图象的开口方向、对称轴和顶点坐标吗? 函数yx22的图象的开口向下,对称轴为y轴,顶点坐标是(0,2) 问题11:这个函数图象有哪些性质? 让学生观察函数yx22的图象得出性质:当x0时,函数值y随x的增大而增大;当x0时,函数值y随x的增大而减小;当x0时,函数取得最大值,最大值y2。四、练习:P9 练习1、2、3。五、小结1在同一直角坐标系中,函数yax2k的图象与函数yax2的图象具有什么关系? 2你能说出函数yax2k具有哪些性质?六、作业:1P19习题262 1(1)2选用课时作业优化设计第一课时作业优化设计 1分别在同一直角坐标系中,画出下列各组两个二次函数的图象。 (1)y2x2与y2x22; (2)y3x21与y3x21。 2.在同一直角坐标系内画出下列二次函数的图象, yx2,yx22,yx22 观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置。 你能说出抛物线yx2k的开口方向及对称轴、顶点的位置吗? 3根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线yx2得到抛 物线yx22和yx22? 4试说出函数yx2,yx22,yx22的图象所具有的共同性质。数学质量检测试题命题说明一、命题指导思想: 依据小学数学课程标准及小学数学教学大纲的相关要求,本学期所学教材所涉猎的基础知识、基本技能为切入点,贯彻“以学生为本,关注每一位学生的成长”的教育思想,旨在全面培养学生的数学素养。二、命题出发点: 面向全体学生,关注不同层面学生的认知需求,以激励、呵护二年级学生学习数学的积极性,培养学生认真、严谨、科学的学习习惯,促进学生逐步形成良好的观察能力、分析能力及缜密的逻辑思维能力,培养学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冲压安全培训意义课件
- 冲击钻安全生产培训课件
- 退伙协议模板:文化创意产业合伙企业退出协议
- 零售连锁便利店品牌区域代理及承包经营协议
- 韩世远:城市绿道划拨土地房产交易合同
- 环保节能项目合作保密及科技成果转化协议
- 水电站项目委托代建与环保措施合同
- 五星级酒店厨房厨师聘用及技能培训服务合同
- 保障作战课件
- 2025简约合同范本
- 私募股权投资基金的会计处理全解析
- 高级高炉炼铁操作工技能鉴定考试题及答案
- 前置公司协议书范本
- 房产中介居间服务合同
- 养老院预防老人食品药品误食
- 大学生创业基础2000116-知到答案、智慧树答案
- (正式版)YBT 6328-2024 冶金工业建构筑物安全运维技术规范
- (正式版)HGT 6270-2024 防雾涂料
- 2024年的老龄化社会与养老产业
- 钣金生产工艺
- 护理信息学课件
评论
0/150
提交评论