




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014年中考数学分类汇编运动变化类的压轴题一、单动点问题【题1】(2014年江苏徐州第28题)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EGEF,EG与圆O相交于点G,连接CG(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;【题2】(2014湖州第24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PEPF交y轴于点E,设点F运动的时间是t秒(t0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F,经过M、E和F三点的抛物线的对称轴交x轴于点Q,连接QE在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由【题3】 (2014年四川省绵阳市第24题)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE(1)求证:DECEDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值(2014无锡第28题)如图1,已知点A(2,0),B(0,4),AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N设P运动的时间为t(0t2)秒(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设MNC与OAB重叠部分的面积为S试求S关于t的函数关系式;在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由(2014杭州第22题)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PFAB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值(2014黄冈第25题)已知:如图,在四边形OABC中,ABOC,BCx轴于点C,A(1,1),B(3,1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0t2),OPQ与四边形OABC重叠部分的面积为S(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将OPQ绕着点P按逆时针方向旋转90,是否存在t,使得OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式二、双动点问题【题1】(2014年山东烟台第25题)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动(1)如图,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图若AD=2,试求出线段CP的最小值【题2】(2014温州第24题)如图,在平面直角坐标系中,点A,B的坐标分别为(3,0),(0,6)动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒(1)当点C运动到线段OB的中点时,求t的值及点E的坐标(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形(3)在线段PE上取点F,使PF=1,过点F作MNPE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中PCOD的面积为S当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围(2014年湖北随州第25题)平面直角坐标系中,四边形ABCD是菱形,点C的坐标为(3,4),点A在x轴的正半轴上,O为坐标原点,连接OB,抛物线y=ax2+bx+c经过C、O、A三点(1)直接写出这条抛物线的解析式;(2)如图1,对于所求抛物线对称轴上的一点E,设EBO的面积为S1,菱形ABCD的面积为S2,当S1S2时,求点E的纵坐标n的取值范围;(3)如图2,D(0,)为y轴上一点,连接AD,动点P从点O出发,以个单位/秒的速度沿OB方向运动,1秒后,动点Q从O出发,以2个单位/秒的速度沿折线OAB方向运动,设点P运动时间为t秒(0t6),是否存在实数t,使得以P、Q、B为顶点的三角形与ADO相似?若存在,求出相应的t值;若不存在,请说明理由(2014昆明第23题)如图,在平面直角坐标系中,抛物线与x轴交于点A(,0)、B(4,0)两点,与y轴交于点C.OxyCBAPQ(1) 求抛物线的解析式;(2) 点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度向C点运动.其中一个点到达终点时,另一个点也停止运动.当PBQ存在时,求运动多少秒使PBQ的面积最大,最多面积是多少?(3) 当PBQ的面积最大时,在BC下方的抛物线上存在点K,使,求K点坐标.(2014年四川巴中第31题)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx4与x轴交于点A(2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线lx轴,交AC或BC于点P,设点M的运动时间为t秒(t0)求点M的运动时间t与APH的面积S的函数关系式,并求出S的最大值三、几何图形运动问题【题1】(2014苏州第28题)如图,已知l1l2,O与l1,l2都相切,O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若O与矩形ABCD沿l1同时向右移动,O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图,连接OA、AC,则OAC的度数为 ;(2)如图,两个图形移动一段时间后,O到达O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d2时,求t的取值范围(解答时可以利用备用图画出相关示意图)(2014怀化第24题)如图1,在平面直角坐标系中,AB=OB=8,ABO=90,yOC=45,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住院部个人工作计划
- 河北保定曲阳县2025年七下数学期末统考试题含解析
- 高峰期仓库工作计划
- 2024年河南省医疗保障局下属事业单位真题
- 2024年南安市实验中学招聘笔试真题
- 社交媒体经理工作总结与传播策略计划
- 内蒙古乌海二十二中学2025届数学七下期末检测模拟试题含解析
- 2025年网络管理员考试自己测试试题
- 材料力学性能测试疲劳寿命环境因素重点基础知识点
- 广东省珠海市斗门区2025年七年级数学第二学期期末综合测试试题含解析
- DB35T 2032-2021 耕地质量监测与评价技术规程
- 《证券投资学》全套教学课件
- 2024年秋新北师大版七年级上册数学教学课件 第五章 一元一次方程 第4节 问题解决策略:直观分析
- DLT5196-2016 火力发电厂石灰石-石膏湿法烟气脱硫系统设计规程
- DL∕ T 802.3-2007 电力电缆用导管技术条件 第3部分:氯化聚氯乙烯及硬聚氯乙烯塑料电缆导管
- 穿越时空的音乐鉴赏之旅智慧树知到期末考试答案章节答案2024年浙江中医药大学
- CJT 511-2017 铸铁检查井盖
- 活动执行实施合同范本
- 24春国开电大《机电一体化系统综合实训》实训报告
- DZ∕T 0207-2020 矿产地质勘查规范 硅质原料类(正式版)
- 医院培训课件:《分级护理制度》
评论
0/150
提交评论