浙江省金甬台丽数学高考研讨会之(概率统计能力培养).ppt_第1页
浙江省金甬台丽数学高考研讨会之(概率统计能力培养).ppt_第2页
浙江省金甬台丽数学高考研讨会之(概率统计能力培养).ppt_第3页
浙江省金甬台丽数学高考研讨会之(概率统计能力培养).ppt_第4页
浙江省金甬台丽数学高考研讨会之(概率统计能力培养).ppt_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率统计教学中学生创造性思维能力的培养 台州市新河中学钟振华 培养学生的创造性思维能力 是时代的需要 也是教学理论和教学改革的必然趋势 数学创造性思维不仅存在于创造活动中 也存在于学习活动中 在学生的数学思维活动中 常常会产生新的思想 新的观念 新的设计 新的方法 因此 从造就创造型人才的需要出发 数学教学必须注重培养学生的创造性思维能力 这个目标实际上比知识与技能的教学更为重要 1 考试说明 中的能力要求及变化 2 高考试题归类 3 创造性思维的内涵及其主要特征 4 概率统计教学中创造性思维能力培养的途径 1 考试说明 中的能力要求及变化 在 考试目标与要求 中指出 高考数学 考查基础知识的同时 注重考查能力 的命题原则和 以能力立意 为命题指导思想 能力是指空间想象能力 抽象概括能力 推理认证能力 运算求解能力 数据图表处理能力以及应用意识和创新意识 对应用意识的考查 主要采用解决应用问题的形式 对创新意识的考查 主要是对高层次理性思维的考查 选择有效的方法和手段分析信息 进行独立的思考 探索和研究 提出解决问题的思路 创造性地解决问题 对数据图表处理能力的考查 主要考查运用统计的基本方法和思想解决实际问题的能力 能力五 数据处理能力 改为 数据图表处理能力 增加了 图表 两字 其余能力均不变 2 高考试题归类 在考查中涉及频率分布直方图 山东 宁夏海南 湖北等 分层抽样 天津 辽宁 湖南 正态分布 安徽 方差 江苏 茎叶图 福建 等内容相当广泛 其中广东卷 空气质量指数api 安徽卷 甲型h1n1流感 四川卷 旅游消费卷 陕西卷 消费投诉 等都选择了富有时代性的实际背景设计问题 而离散型随机变量的分布列和数学期望则是永久的主题 2 12009年高考试题归类 2 2近5年浙江卷归类 近五年浙江卷概率统计部分的高考题涉及内容相当全面 涉及分布列和期望 05理 08理 09理 求概率 05文 06 07文 08文 09文 涉及反求球的个数 06 08文 频率 05文 涉及正态分布 07理 方差 07理 涉及抽样 07文 直方图 09文 3 创造性思维的内涵及其主要特征 创造性思维是指在创新欲望和热情的驱动下 突破传统思维习惯和逻辑规则 以新颖的思路来阐明问题 解答问题的一种思维方式 通过这种思维不仅能揭示客观事物的本质及其内在联系 而且能够突破已有的知识 经验的局限 产生新颖的 前所未有的思维成果 创造性思维是一种连续的思维品质 是思维的深刻性 广涵性 批判性 灵活性和敏捷性的综合表现 主要有以下特征 新颖性 灵活性 联想性 综合性 发散思维是由某一条件或事实出发 从尽可能多的方面考虑 使思维不局限于一种模式或一个方面 从而获得多种解释或多种结果 发散思维在创造性思维中占主导地位 由于这种思维是朝着各个不同方向进行的 思路开阔易于探索到新结论 提出新的方法和思想 4 概率统计教学中创造性思维能力培养的途径 4 1注重一题多解 培养发散性思维能力 概率统计教学中要鼓励学生对某一个知识点 从不同角度 发掘新奇思路 新解 进行一题多解 一法多用 一题多变 启发学生发散思维 使学生思维从单一性向多维性发展 真正做到举一反三 触类旁通 从中培养学生的创造性思维 发散思维最主要的特点是多向性 变通性和独特性 案例1 2007年福建文科 甲 乙两名跳高运动员一次试跳2米高度成功的概率分别是0 7 0 6 且每次试跳成功与否相互之间没有影响 求 甲 乙两人在第一次试跳中至少有一人成功的概率 方法一 根据概率加法定理得 p c p a b p a p b p ab 0 7 0 6 0 7 0 6 0 88 解析 设a 甲在第一次试跳中成功 b 乙在第一次试跳中成功 c 甲 乙两人在第一次试跳中至少有一人成功 则p a 0 7 p b 0 6 c a b 通过多种方法解题 使学生克服孤立思考的习惯 同时也加深对问题的理解 使学生的思维朝着各个方向发散开去 达到思维的流畅性 广阔性 方法三 根据两两互斥事件的和事件求得 p c p 0 88 方法二 根据对立事件的关系求得 p c 1 1 0 12 0 88 教师要着力引导学生敢于超越传统习惯的束缚 摆脱原有知识和 思维定势 的禁锢 倡导学生提出大胆设想和独特的见解 鼓励他们标新立异 另辟蹊径 寻求具有创新意识的简捷妙法 在概率统计中遇到的是从生产 生活到科学技术各个领域内的各种问题 这就决定了问题的多样化 复杂化 抓住了有代表的典型问题 多题一解 在解题时要善于根据条件和要求 寻求思路 找到规律 培养学生思维的深刻性 4 2归纳多题一解 培养收敛思维能力 案例2 06年浙江 甲 乙两袋装有大小相同的红球和白球 甲袋装有2个红球 2个白球 乙袋装有2个红球 n个白球 在甲 乙两袋中各任取2个球 若n 3 求取到的4个球全是红球的概率 若取到的4个球中至少有2个红球的概率为3 4 求n 题组1 1 06年山东 袋中装着标有数学1 2 3 4 5的小球各2个 从袋中任取3个小球 按3个小球上最大数字的9倍计分 每个小球被取出的可能性都相等 用x表示取出的3个小球上 的最大数字 求 1 取出的3个小球上的数字互不相同的概率 2 随机变量x的概率分布和期望 这组题的解法基本相同 通过归纳练习 使学生做到举一反三 通过多举实例发现共性 培养思维的深刻性 4 09年全国 3 09年四川 2 09年浙江 在1 2 3 9 这9个自然数中 任取3个数 求这3个数中恰有1个是偶数的概率 案例3 题组2 09年浙江 在1 2 3 9 这9个自然数中 任取3个数 求这3个数中恰有1个是偶数的概率 变式1 在大小相同的4个红球和5个白球中任取3个球 求这3个球中恰有1个是红球的概率 变式2 在完全相同的4件正品和5件次品中任取3件 求这3件中恰有1件是正品的概率 4 3启发归纳类推 培养集中思维能力 直觉思维是创造性思维的一种形式 在创新过程中往往发挥着先导作用 布鲁纳认为 直觉思维预感的训练 是正式的学术学科和日常生活中创造性思维的很受重视而重要的特征 直觉思维源于观察 经验 知识的积累 并依靠想象力 洞察力等领悟事物的实质 案例4 必修3p79练习3 下列数据是30个不同国家中每100000名男性患某种疾病的死亡率 27 023 941 633 140 618 813 728 913 214 527 034 828 93 250 15 68 715 27 15 216 513 819 211 215 710 05 61 533 89 2 1 作出这些数据分布的频率分布直方图 2 请由这些数据计算平均数 中位数和标准差 并对它们的含义进行解释 变式 删掉原始数据 请根据直方图计算平均数 众数 中位数 方差 相关高考连接 2009海南 宁夏 18 本小题满分12分 某工厂有工人1000名 其中250名工人参加过短期培训 称为a类工人 另外750名工人参加过长期培训 称为b类工人 现用分层抽样方法 按a类 b类分二层 从该工厂的工人中共抽查100名工人 调查他们的生产能力 此处生产能力指一天加工的零件数 ii 从a类工人中的抽查结果和从b类工人中的抽查结果分别如下表1和表2 求甲 乙两工人都被抽到的概率 其中甲为a类工人 乙为b类工人 i 先确定x y 再在答题纸上完成下列频率分布直方图 就生产能力而言 a类工人中个体间的差异程度与b类工人中个体间的差异程度哪个更小 不用计算 可通过观察直方图直接回答结论 ii 分别估计a类工人和b类工人生产能力的平均数 并估计该工厂工人的生产能力的平均数 从特殊到特殊 特殊到一般的推理 培养了学生思维的集中性 着眼于事物的整体以产生合理的思维跳跃 揭示事物的内在联系 或直接把经验因素同问题的本质联系起来 诱发学生的直觉思维等 以促进学生创造思维能力培养 4 4引导分析类比 培养想象思维能力 由对某一事物的认识 引起对另一在形态或性质上相似的事物的联想叫做类比联想 也称为相似联想 由于类比联想是借助于对某一类事物的认识 通过比较它与另一类事物的某些相似而达到对后者的推测和理解的 因而是从一类对象的认识过渡到另一类对象的认识的思维形式 必修3 p134习题3 2第5题 一个盒子里装有标号为1 2 3 4 5的5张标签 随机地选取两张标签 求这两张标签上的数字为相邻整数的概率 案例5 题组3 类比 2009浙江卷理 在1 2 3 9这9个自然数中 任取3个数 设 为这3个数中两数相邻的组数 例如 若取出的数为1 2 3 则有两组相邻的数1 2和2 3 此时 的值是2 求 随机变量 的分布列及数学期望e 案例6 一个口袋装有大小相同的n n 5且n n 个红球和5个白球 一次从中摸出2个球 2个球的颜色不同则为中奖 摸1次中奖概率为p 记3次摸球 每次摸奖后放回 恰有1次中奖的概率为f p 试问n等于多少时 f p 的值最大 2009年广东省广州市二模 解析 这是一道概率与函数 方程交汇的综合试题 难度大 直接求解学生易卡壳 至此学生无法往下解 每一个人都具有创新的潜能 但是把潜在的创新力转化为现实的创新力 必须要有一个激发潜能 形成创新力的环境和氛围 据此 教师必须实行 民主 平等 的教学观 改变传统的 把知识作为预先决定了的东西教给学生 的课堂教学模式 同时教师还应允许每一位学生凭直觉和经验来进行分析判断推测 允许他们展开争议讨论 允许他们独立地发表各种设想和见解 最大限度地调动学生的积极性 主动性 保护他们创新思维的萌芽 从而促进学生创造性思维能力的培养和发展 案例7 题组4 1 一个口袋装有大小相同的10个红球和5个白球 一次从中摸出2个球 2个球的颜色不同则为中奖 摸1次中奖概率记为p 记3次摸球 每次摸奖后放回 恰有1次中奖的概率为f p 求f p 2 一次摸球中奖概率为p 记3次摸球 每次摸奖后放回 恰有1次中奖的概率为f p 求f p 的最大值 2 一次摸球中奖概率为p 记3次摸球 每次摸奖后放回 恰有1次中奖的概率为f p 求f p 的最大值 3 一个口袋装有大小相同的n n 5且n n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论