开题报告.doc

HFJ1020A驱动桥制动器的设计【汽车毕业设计含8张CAD图+说明书论文2.7万字53页,开题报告,任务书】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图 预览图 预览图 预览图
编号:522260    类型:共享资源    大小:2.81MB    格式:ZIP    上传时间:2015-11-16 上传人:小*** IP属地:福建
45
积分
关 键 词:
hfj1020a 驱动 制动器 设计 汽车 毕业设计 cad 说明书 仿单 论文 53 开题 报告 讲演 呈文 任务书
资源描述:

!【包含文件如下】【汽车车辆工程类】CAD图纸+word设计说明书.doc[27000字,53页]【需要咨询购买全套设计请加QQ97666224】.bat

主减速器总成.dwg

从动齿轮.dwg

制动器总成.dwg

制动蹄.dwg

制动鼓.dwg

半轴.dwg

装配图.dwg

任务书.doc

设计说明书.doc[27000字,53页]

开题报告.doc

过程材料

齿轮轴.dwg


目  录


摘要I

AbstractII

第1章 绪论1

1.1 概述1

1.2 驱动桥现状2

   1.3 设计的主要内容.3

第2章 总体方案论证5

2.1 非断开式驱动桥5

2.2 断开式驱动桥6

2.3 多桥驱动的布置6

2.4 本章小结7

第3章 主减速器设计8

3.1 主减速器结构方案分析8

3.1.1准双曲面齿轮传动8

3.1.2 结构形式9

3.2 主减速器主、从动锥齿轮的支承方案10

3.2.1 主动锥齿轮的支承10

3.2.2 从动锥齿轮的支承10

3.3 主减速器锥齿轮设计10

3.3.1 主减速比i的确定11

3.3.2 主减速器锥齿轮的主要参数选择13

3.4 主减速器锥齿轮的材料15

3.5 主减速器锥齿轮的强度计算16

3.5.1 单位齿长圆周力16

3.5.2 齿轮弯曲强度16

3.5.3 轮齿接触强度17

3.6 主减速器锥齿轮轴承的设计计算17

3.6.1 锥齿轮齿面上的作用力17

3.6.2 锥齿轮轴承的载荷18

3.6.3 锥齿轮轴承型号的确定20

3.7 本章小结21

第4章 差速器设计22

4.1 差速器结构形式选择22

4.2 普通锥齿轮式差速器齿轮设计22

4.3 差速器齿轮的材料24

4.4 普通锥齿轮式差速器齿轮强度计算25

4.5 本章小结25

第5章 半轴的设计26

5.1 半轴的型式26

5.2 半轴的设计与计算27

5.3 半轴的结构设计及材料与热处理30

5.4 本章小结31

第6章 驱动桥壳设计32

6.1 桥壳的结构型式32

6.2 桥壳的受力分析及强度计算33

6.3 本章小结34

第7章 制动器设计35

7.1鼓式制动器的结构型式及选择35

7.2同步附着系数的分析36

7.3制动器制动力矩的确定37

7.4制动器因数计算37

7.5鼓式制动器的结构参数与摩擦系数38

7.5.1 鼓式制动器的结构参数38

7.5.2 摩擦片摩擦系数41

7.6制动器零部件的强度校核42

7.6.1凸轮轴强度校核42

7.6.2铆钉剪切强度校核42

7.6.3支撑销剪切应力计算43

7.6.4回位弹簧强度的校核44

7.7制动器主要结构元件....................................45

7.7.1制动鼓..........................................................45

7.7.2制动蹄............................................................................................45

7.7.3摩擦片......................................................................................45

       7.7.4制动底板.......................................46

7.7.5支撑.................46

      7.7.6制动轮缸......................................................46

7.8本章小结..........................................46

结论47

参考文献48

致谢50

附录................................................. ..................51


摘  要


  本课题是进行HFJ1020A后驱动桥的设计。主要研究的内容有主减速器设计、差速器设计、车轮传动设计、轿壳设计、制动器总成设计主减速器设计、差速器设计、车轮传动设计、轿壳设计、制动器总成设计。主要解决的问题:方的案选择,驱动桥的形式,齿轮的计算及校核,制动器的设计计算。尽量使设计内容运行稳定可靠,成本降低,适合本国路面的行驶状况和国情。确保设计出结构简单、工作可靠、造价低廉的驱动桥,使其使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少。

  本次毕业设计经过了从选题、调研、设计方案的制定到设计计算、总成图及零件图的绘制,结合计算数据及实物完成了驱动桥、制动器、主减速器总装图的绘制,半轴、主从动双曲面锥齿轮零件图的绘制,完成设计说明书,达到所设计的驱动桥基本上接近实验室驱动桥教具,从中受益颇丰。

  本次设计的驱动桥总成最终能保证发动机输出的动力能够有效得传递到驱动车轮上,从而使汽车行驶可靠,平稳,达到预期目标。




关键词:驱动桥;主减速器;差速器;半轴;制动器;设计


内容简介:
第1章 绪 论1.1 概述本课题是对驱动桥的结构设计。故本说明书将以“驱动桥(含制动器)设计”内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。课题所设计的哈飞民意微型车最高车速100km/h,发动机标定功率(5000r/min)35.5kW,最大扭矩(30003500r/min)74 Nm。它有以下两大难题,一是将发动机输出扭矩通过万向传动轴将动力传递到后轮子上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。本课题的设计思路可分为以下几点:首先选择初始方案,哈飞民意属于微型车,采用后桥驱动,所以设计的驱动桥结构需要符合微型车的结构要求;接着选择各部件的结构形式;最后选择各部件的具体参数,设计出各主要尺寸。所设计的微型车驱动桥制造工艺性好、外形美观,工作更稳定、可靠。该驱动桥设计大大降低了制造成本,同时驱动桥使用维护成本也降低了。驱动桥结构符合微型车的整体结构要求。设计的产品达到了结构简单,修理、保养方便;机件工艺性好,制造容易的要求。目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。如果你的变速器出了故障,对于后轮驱动的汽车就不需要对差速器进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是做在一起的。所以后轮驱动必然会使得乘车更加安全、舒适,从而带来可观的经济效益。1.2驱动桥现状 为适应不断完善社会主义市场经济体制的要求以及加入世贸组织后国内外汽车产业发展的新形势,推进汽车产业结构调整和升级,全面提高汽车产业国际竞争力,满足消费者对汽车产品日益增长的需求,促进汽车产业健康发展,特制定汽车产业发展政策。通过该政策的实施,使我国汽车产业在2010年前发展成为国民经济的支柱产业,为实现全面建设小康社会的目标做出更大的贡献。政府职能部门依据行政法规和技术规范的强制性要求,对汽车、农用运输车(低速载货车及三轮汽车,下同)、摩托车和零部件生产企业及其产品实施管理,规范各类经济主体在汽车产业领域的市场行为。低速载货汽车,在汽车发展趋势中,有着很好的发展前途。生产出质量好,操作简便,价格便宜的低速载货汽车将适合大多数消费者的要求。在国家积极投入和支持发展汽车产业的同时,能研制出适合中国国情,包括道路条件和经济条件的车辆,将大大推动汽车产业的发展和社会经济的提高。在新政策汽车产业发展政策中,在2010年前,我国就要成为世界主要汽车制造国,汽车产品满足国内市场大部分需求并批量进入国际市场;2010年,汽车生产企业要形成若干驰名的汽车、摩托车和零部件产品品牌;通过市场竞争形成几家具有国际竞争力的大型汽车企业集团,力争到2010年跨入世界500强企业之列,等等。同时,在这个新的汽车产业政策描绘的蓝图中,还包含许多涉及产业素质提高和市场环境改善的综合目标,着实令人鼓舞。然而,不可否认的是,国内汽车产业的现状离产业政策的目标还有相当的距离。自1994年汽车工业产业政策颁布并执行以来,国内汽车产业结构有了显著变化,企业规模效益有了明显改善,产业集中度有了一定程度提高。但是,长期以来困扰中国汽车产业发展的散、乱和低水平重复建设问题,还没有从根本上得到解决。多数企业家预计,在新的汽车产业政策的鼓励下,将会有越来越多的汽车生产企业按照市场规律组成企业联盟,实现优势互补和资源共享。汽车行业的飞速发展,带动了整个国内汽车零部件企业的向前推进。 (1)由于整车的市场集中度增加,目前国内车桥行业趋向于技术上强强联手,共谋发展。 (2)由于近几年国家对汽车零部件行业出台相应的政策,以扶植其向正轨,所以整体看来车桥行业布局已大体完成。 (3)大吨位、多轴化、大马力节能、环保、舒适等方面发展的趋势,要求车桥要轻量化、大转矩、低噪声宽速比、寿命长和低生产成本。 (4)零部件企业与整机企业同步设计、开发、系统集成、模块化供货。 综上,随着国内公路建设水平的不断提高,车桥总成向传动效率高的单级减速方向发展。单级驱动桥结构简单,机械传动效率高,易损件少,可靠性高。由于单级桥传动链减少,摩擦阻力小,比双级桥省油,噪声也小。过去,单级桥因为桥包尺寸大,离地间隙小,导致通过性较差,应用范围相对较小,但是现在公路状况已经得到了显著改善,汽车使用条件对通过性的要求降低。这种情况下,单级桥的劣势得以忽略,而其优势不断突出,所以在设计制造中的应用范围肯定越来越广。目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。如果你的变速器出了故障,对于后轮驱动的汽车就不需要对差速器进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是做在一起的。所以后轮驱动必然会使得乘车更加安全、舒适,从而带来可观的经济效益在本次设计中努力做到符合驱动桥的基本要求,使工作平稳、结构简单、维修方便、传动效率高,满足达到最佳的动力性和燃料经济性,适应时代要求,顺利完成设计。1.3设计主要内容 本设计设计的是HFJ1020A驱动桥(包含制动器)的设计,本设计主要研究的内容有主减速器设计、差速器设计、车轮传动设计、轿壳设计、制动器总成设计主减速器设计、差速器设计、车轮传动设计、轿壳设计、制动器总成设计。主要解决的问题:方的案选择,驱动桥的形式,齿轮的计算及校核,制动器的设计计算。 设计参数:整备质量Kg:940Kg总质量Kg:1560最大功率(kw/rpm): 35.5/5000最大扭矩(Nm/rpm): 74/30003500轮胎类型与规格: 165/70R13C最高车速(km/h): 100第2章 总体方案论证驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 驱动桥设计应当满足如下基本要求:1.所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。2.外形尺寸要小,保证有必要的离地间隙。3.齿轮及其它传动件工作平稳,噪声小。4.在各种转速和载荷下具有高的传动效率。5.在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。 6.与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。7.结构简单,加工工艺性好,制造容易,拆装,调整方便。驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。2.1 非断开式驱动桥普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。2.2 断开式驱动桥断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。2.3 多桥驱动的布置为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用的有44、66、88等驱动型式。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造成各驱动桥的零件特别是桥壳、半轴等主要零件不能通用。而对88汽车来说,这种非贯通式驱动桥就更不适宜,也难于布置了。为了解决上述问题,现代多桥驱动汽车都是采用贯通式驱动桥的布置型式。在贯通式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,并且各驱动桥不是分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并贯通中间桥而传递的。其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,并且简化了结构、减小了体积和质量。这对于汽车的设计(如汽车的变型)、制造和维修,都带来方便。由于非断开式驱动桥结构简单、造价低廉、工作可靠,查阅资料,参照国内相关微型车的设计,最后本课题选用非断开式驱动桥。其结构如图2.1所示:图2.1 驱动桥2.4本章小结本章首先进行了驱动桥总成的概述。通过分析确定了驱动桥各主要部件的型式。主减速器的减速形式,主减速器齿轮的类型,主、从动锥齿轮的支承形式及安装方式,主减速器的轴承预紧及齿轮啮合调整,差速器、半轴及桥壳型式的初步选定第3章 主减速器设计主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力。驱动桥中主减速器、差速器设计应满足如下基本要求: 1.所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。2.外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。3.在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。4.在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。5.结构简单,加工工艺性好,制造容易,拆装、调整方便。3.1 主减速器结构方案分析 主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。3.1.1准双曲面齿轮传动 (a)螺旋锥齿轮传动 (b)双曲面齿轮传动 图3.1 主减速器齿轮传动按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。为了减少驱动桥的外轮廓尺寸,主减速器中基本不用直齿圆锥齿轮而采用螺旋锥齿轮。因为螺旋锥齿轮不发生根切(齿轮加工中产生轮齿根部切薄现象,致使齿轮强度大大降低)的最小齿数比直齿轮的最小齿数少,使得螺旋锥齿轮在同样的传动比下主减速器结构较紧凑。此外,螺旋锥齿轮还具有运转平稳、噪声小等优点,汽车上获得广泛应用。近年来,有些汽车的主减速器采用准双曲面锥齿轮(车辆行业中简称双曲面传动)传动。准双曲面锥齿轮传动与圆锥齿轮相比,准双曲面齿轮传动不仅工作平稳性更好,弯曲强度和接触强度更高,同时还可使主动齿轮的轴线相对于从动齿轮轴线偏移。当主动准双曲面齿轮轴线向下偏移时,可降低主动锥齿轮和传动轴位置,从而有利于降低车身及整车重心高度,提高汽车行使的稳定性。东风EQ1090E型汽车即采用下偏移准双曲面齿轮。但是,准双曲面齿轮传递转矩时,齿面间有较大的相对滑动,且齿面间压力很大,齿面油膜很容易被破坏。为减少摩擦,提高效率,必须采用含防刮伤添加剂的双曲面齿轮油,绝不允许用普通齿轮油代替,否则将时齿面迅速擦伤和磨损,大大降低使用寿命。查阅文献1、2,经方案论证,主减速器的齿轮选用准双曲面齿轮传动形式。准双曲面齿轮传动不仅工作平稳性更好,弯曲强度和接触强度更高,同时还可使主动齿轮的轴线相对于从动齿轮轴线偏移。当主动准双曲面齿轮轴线向下偏移时,可降低主动锥齿轮和传动轴位置,从而有利于降低车身及整车重心高度,提高汽车行使的稳定性。3.1.2 结构形式 为了满足不同的使用要求,主减速器的结构形式也是不同的。按参加减速传动的齿轮副数目分,有单级式主减速器和双级式主减速器、双速主减速器、双级减速配以轮边减速器等。双级式主减速器应用于大传动比的中、重型汽车上,若其第二级减速器齿轮有两副,并分置于两侧车轮附近,实际上成为独立部件,则称轮边减速器。单级式主减速器应用于轿车和一般轻、中型载货汽车。单级主减速器由一对圆锥齿轮组成,具有结构简单、质量小、成本低、使用简单等优点。查阅文献1、2,经方案论证,本设计主减速器采用单级主减速器。其传动比i0一般小于等于7。3.2 主减速器主、从动锥齿轮的支承方案主减速器中心必须保证主从动齿轮具有良好的啮合状况,才能使它们很好地工作。齿轮的正确啮合,除了与齿轮的加工质量装配调整及轴承主减速器壳体的刚度有关以外,还与齿轮的支承刚度密切相关。3.2.1 主动锥齿轮的支承主动锥齿轮的支承形式可分为悬臂式支承和跨置式支承两种。查阅资料、文献,经方案论证,采用悬臂式支承结构(如图3.2示)。图3.2 主减速器主动锥齿轮的支承型式(a)悬臂式 (b)骑马式轿车和装载质量为2t以下的载货汽车主减速器主动齿轮都是采用悬臂式支承。本课题所设计的哈飞民意微型车装载质量为1560kg,所以选用悬臂式支承。3.2.2 从动锥齿轮的支承 从动锥齿轮采用圆锥滚子轴承支承(如图3.3示)。为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸c+d。为了使从动锥齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承稳定性,c+d应不小于从动锥齿轮大端分度圆直径的70%。为了使载荷能均匀分配在两轴承上,应是c等于或大于d。3.3 主减速器锥齿轮设计 主减速比i、驱动桥的离地间隙和计算载荷,是主减速器设计的原始数据,应在汽车总体设计时就确定。3.3.1 主减速比i的确定 主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。i的选择应在汽车总体设计时和传动系的总传动比i一起由整车动力计算来确定。可利用在不同i下的功率平衡田来研究i对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择i值,可使汽车获得最佳的动力性和燃料经济性。 图3.3 从动锥齿轮支撑形式对于具有很大功率储备的轿车、长途公共汽车尤其是竞赛车来说,在给定发动机最大功率及其转速的情况下,所选择的i值应能保证这些汽车有尽可能高的最高车速。这时i值应按下式来确定: (31)式中车轮的滚动半径, =0.28migh变速器量高档传动比。igh =0.795对于其他汽车来说,为了得到足够的功率储备而使最高车速稍有下降,i一般选择比上式求得的大1025,即按下式选择: (32)式中i分动器或加力器的高档传动比iLB轮边减速器的传动比。根据所选定的主减速比i0值,就可基本上确定主减速器的减速型式(单级、双级等以及是否需要轮边减速器),并使之与汽车总布置所要求的离地间隙相适应。把np=5000r/min rr=0.28m igh=0.795 Vmax=100km/h 代入3-1计算出 i=5.278从动锥齿轮计算转矩TceTce= (33)式中:Tce计算转矩,Nm;Temax发动机最大转矩 Temax = 74;n计算驱动桥数 n = 1 ,if变速器传动比 if = 5.0,i0主减速器传动比 i0 = 6.64,变速器传动效率=0.95,k液力变矩器变矩系数 k=1,Kd由于猛接离合器而产生的动载系数Kd = 1 ,i1变速器最低挡传动比 i1 = 1,代入式(3.3),有: Tce=1855.217 Nm主动锥齿轮计算转矩: 按驱动轮打滑转矩确定从动齿轮的计算转矩Tcs Tcs= 满载状态下驱动桥上的静载荷; 为汽车最大加速度时后轴负荷转移系数,乘用车=1.21.4、 商用车=1.11.2; 为轮胎与地面间的附着系数,取0.85; 车轮滚动半径,0.28 m; 主减速器从动齿轮间的传动比,取1; 主减速器主动齿轮到车轮之间的粗寒冬效率,取0.95; Tcs=2668.27 Nm 主动齿轮的计算转矩为: 主传动比; 主从动锥齿轮间的传动效率,取0.95; Nm 所以,主动齿轮的计算转矩370 Nm3.3.2 主减速器锥齿轮的主要参数选择1.主、从动锥齿轮齿数z1和z2 选择主、从动锥齿轮齿数时应考虑如下因素;为了啮合平稳、噪音小和具有高的疲劳强度,大小齿轮的齿数和不少于40在轿车主减速器中,小齿轮齿数不小于9。表31主、从动锥齿轮参数参 数符 号主动锥齿轮从动锥齿轮分度圆直径d=mz50184齿顶高ha=1.68mh2;h2=0.44m6.2252.175齿根高hf=1.865m-ha3.17.15齿顶圆直径da=d+2hacos62185齿根圆直径df=d-2hfcos44181齿顶角a241321齿根角f=arctan1.423.27分锥角=arctan13.776.3顶锥角a15417821根锥角f11397419锥距R=125125分度圆齿厚S=0.888m55齿宽B=0.155d23030查阅资料,经方案论证,主减速器的传动比为5.278,主动齿轮齿数z1=10,从动齿轮齿数z2=41 2.主、从动锥齿轮齿形参数计算按照文献3中的设计计算方法进行设计和计算,结果见表3.1。从动锥齿轮分度圆直径 d2=184mm kd2取15齿轮端面模数m =d2/z2=184/41=5 3.中点螺旋角弧齿锥齿轮副的中点螺旋角是相等的。汽车主减速器弧齿锥齿轮螺旋角的平均螺旋角一般为3540。货车选用较小的值以保证较大的F,使运转平稳,噪音低。取=35。 4.法向压力角法向压力角大一些可以增加轮齿强度,减少齿轮不发生根切的最少齿数,也可以使齿轮运转平稳,噪音低。对于货车弧齿锥齿轮,一般选用20。 5.螺旋方向从锥齿轮锥顶看,齿形从中心线上半部向左倾斜为左旋,向右倾斜为右旋。主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受轴向力的方向。当变速器挂前进挡时,应使主动齿轮的轴向力离开锥顶方向,这样可以使主、从动齿轮有分离趋势,防止轮齿卡死而损坏。3.4 主减速器锥齿轮的材料 驱动桥锥齿轮的工作条件是相当恶劣的,与传动系其它齿轮相比,具有载荷大、作用时间长、变化多、有冲击等特点。因此,传动系中的主减速器齿轮是个薄弱环节。主减速器锥齿轮的材料应满足如下的要求:1.具有高的弯曲疲劳强度和表面接触疲劳强度,齿面高的硬度以保证有高的耐磨性。2.齿轮芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下齿根折断。3.锻造性能、切削加工性能以及热处理性能良好,热处理后变形小或变形规律易控制。4.选择合金材料是,尽量少用含镍、铬的材料,而选用含锰、钒、硼、钛、钼、硅等元素的合金钢。汽车主减速器锥齿轮与差速器锥齿轮目前常用渗碳合金钢制造,主要有20CrMnTi、20MnVB、20MnTiB、22CrNiMo和16SiMn2WMoV。渗碳合金钢的优点是表面可得到含碳量较高的硬化层(一般碳的质量分数为0.8%1.2%),具有相当高的耐磨性和抗压性,而芯部较软,具有良好的韧性。因此,这类材料的弯曲强度、表面接触强度和承受冲击的能力均较好。由于钢本身有较低的含碳量,使锻造性能和切削加工性能较好。其主要缺点是热处理费用较高,表面硬化层以下的基底较软,在承受很大压力时可能产生塑性变形,如果渗碳层与芯部的含碳量相差过多,便会引起表面硬化层的剥落。为改善新齿轮的磨合,防止其在余兴初期出现早期的磨损、擦伤、胶合或咬死,锥齿轮在热处理以及精加工后,作厚度为0.0050.020mm的磷化处理或镀铜、镀锡处理。对齿面进行应力喷丸处理,可提高25%的齿轮寿命。对于滑动速度高的齿轮,可进行渗硫处理以提高耐磨性。3.5 主减速器锥齿轮的强度计算3.5.1 单位齿长圆周力按发动机最大转矩计算时P= (34) 式中: ig变速器传动比,常取一挡传动比,ig=5.0 ;D1主动锥齿轮中点分度圆直径mm;D=25mm其它符号同前;将各参数代入式(3.4),有:P=606 N/mm按照文献1,PP=1429 N/mm,锥齿轮的表面耐磨性满足要求。3.5.2 齿轮弯曲强度锥齿轮轮齿的齿根弯曲应力为: = (35)式中:锥齿轮轮齿的齿根弯曲应力,MPa;T齿轮的计算转矩,Nm;k0过载系数,一般取1;ks尺寸系数,0.67;km齿面载荷分配系数,悬臂式结构,km=1.25;kv质量系数,取1;b所计算的齿轮齿面宽;b=30mmD所讨论齿轮大端分度圆直径;Jw齿轮的轮齿弯曲应力综合系数,取0.3;对于主动锥齿轮, T=370 Nm;从动锥齿轮,T=1855.217Nm;将各参数代入式(3-5),有: 主动锥齿轮, =356MPa;从动锥齿轮, =388MPa;按照文献1, 主从动锥齿轮的=700MPa,轮齿弯曲强度满足要求。3.5.3 轮齿接触强度 锥齿轮轮齿的齿面接触应力为: j= (36)式中:j锥齿轮轮齿的齿面接触应力,MPa;D1主动锥齿轮大端分度圆直径,mm;D1=25mmb主、从动锥齿轮齿面宽较小值;b=30mmkf齿面品质系数,取1.0;cp综合弹性系数,取232N1/2/mm;ks尺寸系数,取1.0;Jj齿面接触强度的综合系数,取0.3;Tz主动锥齿轮计算转矩;Tz=370N.mk0、km、kv选择同式(3.5)将各参数代入式 (3.6),有: j=2357.69MPa按照文献1,jj=2800MPa,轮齿接触强度满足要求。3.6 主减速器锥齿轮轴承的设计计算3.6.1 锥齿轮齿面上的作用力 锥齿轮在工作过程中,相互啮合的齿面上作用有一法向力。该法向力可分解为沿齿轮切线方向的圆周力、沿齿轮轴线方向的轴向力以及垂直于齿轮轴线的径向力。1.齿宽中点处的圆周力F F= (37)式中:T作用在从动齿轮上的转矩;Dm2从动齿轮齿宽中点处的分度圆直径,由式(3.8)确定,即Dm2=D2-b2sin2 (38)式中:D2从动齿轮大端分度圆直径;D2=184mmb2从动齿轮齿面宽;b2=30mm2从动齿轮节锥角;2=76.3将各参数代入式(3.8),有:Dm2=155mm将各参数代入式(3.7),有: F=3000N对于弧齿锥齿轮副,作用在主、从动齿轮上的圆周力是相等的。 2.锥齿轮的轴向力Faz和径向力Frz(主动锥齿轮左旋,逆时针转) 作用在主动锥齿轮齿面上的轴向力Faz和径向力分别为Faz= (3.9)Frz= (310)将各参数分别代入式(3.9) 与式(3.10)中,有:Faz= 2752N,Frz=142N3.6.2 锥齿轮轴承的载荷当锥齿轮齿面上所受的圆周力、轴向力和径向力计算确定后,根据主减速器齿轮轴承的布置尺寸,即可求出轴承所受的载荷。图3-4为单级主减速器的悬臂式支承的尺寸布置图: 图3.4为单级主减速器轴承布置尺寸 a=20mm , b=72mm c=d=58mm 由主动锥齿轮齿面受力简图,得出各轴承所受的径向力与轴向力。轴承A:径向力 (311) 轴向力 Fa= Faz (312) 图3.5 主动锥齿轮齿面受力简图 将各参数代入式(3.11)与(3.12),有 Fr=3997N,Fa=2752N轴承B:径向力Fr= (313) 轴向力 Fa= 0 (3.14)将各参数代入式(313)与(314),有 Fr=1493N,Fa=0N轴承C:径向力Fr= (315) 轴向力Fa= Faz (3.16)将各参数代入式(315)与(316),有: Fr=2283N,Fa=2752N轴承D:径向力Fr= (317) 轴向力Fa= 0 (3.18)将各参数代入式(317)与(318),有:Fr=1745N,Fa=0N3.6.3锥齿轮轴承型号的确定轴承A计算当量动载荷P=0.69查阅文献2,锥齿轮圆锥滚子轴承e值为0.36,故 e,由此得X=0.4,Y=1.7。另外查得载荷系数fp=1.2。P=fp(XFr+YFa) (3.19)将各参数代入式(319)中,有: P=7533N轴承应有的基本额定动负荷CrCr= (320)式中:ft温度系数,查文献4,得ft=1;滚子轴承的寿命系数,查文献4,得=10/3;n轴承转速,r/min;Lh轴承的预期寿命,5000h;将各参数代入式(320)中,有;Cr=24061N初选轴承型号查文献3,初步选择Cr =24330N Cr的圆锥滚子轴承7206E。验算7206E圆锥滚子轴承的寿命Lh = (3.21) 将各参数代入式(321)中,有: Lh =4151h5000h所选择7206E圆锥滚子轴承的寿命低于预期寿命,故选7207E轴承,经检验能满足。轴承B、轴承C、轴承D、强度都可按此方法得出,其强度均能够满足要求。3.7本章小结本章根据所给基础数据确定了主减速器的参数,进行了主减速器齿轮计算载荷的计算、齿轮参数的选择,双曲面锥齿轮的几何尺寸计算与强度计算并对主减速器齿轮的材料及热处理,轴承的预紧,主减速器的润滑等做了必要的说明。第4章 差速器设计汽车在行使过程中,左右车轮在同一时间内所滚过的路程往往是不相等的,左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行使阻力不等等。这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行使或直线行使,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左右车轮间都装有轮间差速器。差速器是个差速传动机构,用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。4.1 差速器结构形式选择 汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。它可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器。普通齿轮式差速器的传动机构为齿轮式。齿轮差速器要圆锥齿轮式和圆柱齿轮式两种。强制锁止式差速器就是在对称式锥齿轮差速器上设置差速锁。当一侧驱动轮滑转时,可利用差速锁使差速器不起差速作用。差速锁在军用汽车上应用较广。 查阅文献5经方案论证,差速器结构形式选择对称式圆锥行星齿轮差速器。普通的对称式圆锥行星齿轮差速器由差速器左、右壳,2个半轴齿轮,4个行星齿轮(少数汽车采用3个行星齿轮,小型、微型汽车多采用2个行星齿轮),行星齿轮轴(不少装4个行星齿轮的差逮器采用十字轴结构),半轴齿轮及行星齿轮垫片等组成。由于其结构简单、工作平稳、制造方便、用在公路汽车上也很可靠等优点,最广泛地用在轿车、客车和各种公路用载货汽车上有些越野汽车也采用了这种结构,但用到越野汽车上需要采取防滑措施。例如加进摩擦元件以增大其内摩擦,提高其锁紧系数;或加装可操纵的、能强制锁住差速器的装置差速锁等。4.2 普通锥齿轮式差速器齿轮设计 1.行星齿轮数n通常情况下,微型车的行星齿轮数n=2 2.行星齿轮球面半径Rb行星齿轮球面半径Rb反映了差速器锥齿轮节锥矩的大小和承载能力。Rb=Kb (4.1)式中:Kb行星齿轮球面半径系数,Kb=2.53.0,对于有两个行星齿轮的轿车取最大值;Td差速器计算转矩,Nm;将各参数代入式(4.1),有:Rb=31 mm3.行星齿轮和半轴齿轮齿数z1和z2 为了使轮齿有较高的强度,z1一般不少于10。半轴齿轮齿数z2在1425选用。大多数汽车的半轴齿轮与行星齿轮的齿数比在1.52.0的范围内,且半轴齿轮齿数和必须能被行星齿轮齿数整除。查阅资料,经方案论证,初定半轴齿轮与行星齿轮的齿数比=1.6,半轴齿轮齿数z2=16,行星齿轮的齿数 z1=10 4.行星齿轮和半轴齿轮节锥角1、2及模数m 行星齿轮和半轴齿轮节锥角1、2分别为 1= (4.2)2= (4.3)将各参数分别代入式(4.2)与式(4.3),有:1=32,2=58锥齿轮大端模数m为 m= (4.4)将各参数代入式(4.4),有:m=3.43查阅文献3,取模数m=3.55.半轴齿轮与行星齿轮齿形参数 按照文献3中的设计计算方法进行设计和计算,结果见表4.1。6.压力角 汽车差速齿轮大都采用压力角=2230,齿高系数为0.8的齿形。表4.1半轴齿轮与行星齿轮参数参 数符 号半轴齿轮行星齿轮分度圆直径d5635齿顶高ha23.6齿根高hf4.262.66齿顶圆直径da58.1241.1齿根圆直径df51.4830.5周节t1111齿根角f7.54.7分度圆锥角6327顶锥角a62.6539.3根锥角f60.527.3锥距R3030分度圆齿厚s43齿宽b7.57.5 6.行星齿轮轴用直径d 行星齿轮轴用直径d(mm)为 d= (4.5)式中:T0差速器壳传递的转矩,Nm;n行星齿轮数;rd行星齿轮支承面中点到锥顶的距离,mm;c 支承面许用挤压应力,取69MPa;将各参数代入式(4-5)中,有:d=10.43mm 4.3 差速器齿轮的材料差速器齿轮和主减速器齿轮一样,基本上都是用渗碳合金钢制造,目前用于制造差速器锥齿轮的材料为20CrMnTi、20CrMoTi、22CrMnMo和20CrMo等。由于差速器齿轮轮齿要求的精度较低,所以精锻差速器齿轮工艺已被广泛应用。4.4 普通锥齿轮式差速器齿轮强度计算差速器齿轮的尺寸受结构限制,而且承受的载荷较大,它不像主减速器齿轮那样经常处于啮合传动状态,只有当汽车转弯或左、右轮行使不同的路程时,或一侧车轮打滑而滑转时,差速器齿轮才能有啮合传动的相对运动。因此,对于差速器齿轮主要应进行弯曲强度计算。轮齿弯曲应力w(MPa)为w= (4.6)式中:n行星齿轮数;J综合系数0.13;b2半轴齿轮齿宽,mm;d2半轴齿轮大端分度圆直径,mm;T半轴齿轮计算转矩(Nm),T=0.6 T0;ks、km、kv按照主减速器齿轮强度计算的有关转矩选取;将各参数代入式(4-6)中,有:w=896 MPa按照文献1, 差速器齿轮的ww=980 MPa,所以齿轮弯曲强度满足要求。4.5 本章小结本章介绍了差速器的作用及工作原理,基于对称式圆锥行星齿轮差速器的基本参数进行了相应的设计计算,对差速器齿轮的几何尺寸及强度进行了相应的计算,最终确定了所设计差速器的各个参数,取得机械设计、机械制造的标准值并满足了强度计算和校核。第5章 半轴的设计驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中,驱动车轮的传动装置包括半轴和万向节传动装置且多采用等速万向节。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半轴齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。5.1 半轴的型式普通非断开式驱动桥的半轴,根据其外端的支承型式或受力状况的不同而分为半浮式、3/4浮式和全浮式三种。半浮式半轴以靠近外端的轴颈直接支承在置于桥壳外端内孔中的轴承上,而端部则以具有锥面的轴颈及键与车轮轮毂相固定,或以突缘直接与车轮轮盘及制动鼓相联接)。因此,半浮式半轴除传递转矩外,还要承受车轮传来的弯矩。由此可见,半浮式半轴承受的载荷复杂,但它具有结构简单、质量小、尺寸紧凑、造价低廉等优点。用于质量较小、使用条件较好、承载负荷也不大的轿车和轻型载货汽车。3/4浮式半轴的结构特点是半轴外端仅有一个轴承并装在驱动桥壳半轴套管的端部,直接支承着车轮轮毂,而半轴则以其端部与轮毂相固定。由于一个轴承的支承刚度较差,因此这种半轴除承受全部转矩外,弯矩得由半轴及半轴套管共同承受,即3/4浮式半轴还得承受部分弯矩,后者的比例大小依轴承的结构型式及其支承刚度、半轴的刚度等因素决定。侧向力引起的弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命。可用于轿车和轻型载货汽车,但未得到推广。全浮式半轴的外端与轮毂相联,而轮毂又由一对轴承支承于桥壳的半轴套管上。多采用一对圆锥滚子轴承支承轮毂,且两轴承的圆锥滚子小端应相向安装并有一定的预紧,调好后由锁紧螺母予以锁紧,很少采用球轴承的结构方案。由于车轮所承受的垂向力、纵向力和侧向力以及由它们引起的弯矩都经过轮毂、轮毂轴承传给桥壳,故全浮式半轴在理论上只承受转矩而不承受弯矩。但在实际工作中由于加工和装配精度的影响及桥壳与轴承支承刚度的不足等原因,仍可能使全浮式图5.1 半轴型式及受力简图(a)半浮式;(b)3/4浮式;(c)全浮式半轴在实际使用条件下承受一定的弯矩,弯曲应力约为570MPa。具有全浮式半轴的驱动桥的外端结构较复杂,需采用形状复杂且质量及尺寸都较大的轮毂,制造成本较高,故轿车及其他小型汽车不采用这种结构。但由于其工作可靠,故广泛用于轻型以上的各类汽车上。5.2 半轴的设计与计算半轴的主要尺寸是它的直径,设计与计算时首先应合理地确定其计算载荷。半轴的计算应考虑到以下三种可能的载荷工况:1.纵向力X2最大时(X2Z2)附着系数取0.8,没有侧向力作用;2.侧向力Y2最大时,其最大值发生于侧滑时,为Z2,侧滑时轮胎与地面侧向附着系数,在计算中取1.0,没有纵向力作用;3.垂向力Z2最大时,这发生在汽车以可能的高速通过不平路面时,其值为(Z2-gw)kd,kd是动载荷系数,这时没有纵向力和侧向力的作用。由于车轮承受的纵向力、侧向力值的大小受车轮与地面最大附着力的限制,即:故纵向力X2最大时不会有侧向力作用,而侧向力Y2最大时也不会有纵向力作用。5.2.1 半浮式半轴的设计计算 本课题采用带有凸缘的半浮式半轴,其详细的计算校核如下: 1.半浮式半轴计算载荷的确定 半浮式半轴只承受转矩,其计算转矩按下式进行:T=Temaxig1i0 (5.1)式中:差速器的转矩分配系数,对圆锥行星齿轮差速器可取0.6; ig1变速器1挡传动比; i0主减速比。已知:Temax430Nm;ig15.0; i05.278 ;=0.6计算结果: T=1172 N.m 在设计时,半浮式半轴杆部直径的初步选取可按下式进行 (5.2)式中d半轴杆部直径,mm; T半轴的计算转矩,Nrn;半轴扭转许用应力,MPa。根据上式带入T1172 Nm,得:21.61mmd22.98mm取:d=23mm给定一个安全系数 k=1.5d=kd =1.5223 =34.5mm半浮式半轴支承转矩,其计算转矩为 (5.3)三种半轴的扭转应力由下式计算: (5.4)式中半轴的扭转应力,MPa;T半轴的计算转矩Nm;d半轴杆部直径mm。 将数据带入式(5.3)、(5.4)得:=21.99MPa半轴花键的剪切应力为 (5.5)半轴花键的挤压应力为 (5.6)式中 T半轴承受的最大转矩,T=1172Nm;DB半轴花键(轴)外径,32mm;dA相配的花键孔内径,dA=30mm;z花键齿数;Lp花键工作长度,20mm;B花键齿宽,B=3mm;载荷分布的不均匀系数,取0.75。 将数据带入式(5.5)、(5.6)得:=68Mpa=169MPa半轴的最大扭转角为 (5.7)式中 T半轴承受的最大转矩,Nm;l半轴长度,mm;G材料的剪切弹性模量,MPa;J半轴横截面的极惯性矩, mm4。 将数据带入式(5.7)得: = 8半轴计算时的许用应力与所选用的材料、加工方法、热处理工艺及汽车的使用条件有关。当采用40Cr,40MnB,40MnVB,40CrMnMo,40号及45号钢等作为全浮式半轴的材料时,其扭转屈服极限达到784MPa左右。在保证安全系数在1.31.6范围时,半轴扭转许用应力可取为490588MPa。对于越野汽车、矿用汽车等使用条件差的汽车,应该取较大的安全系数,这时许用应力应取小值;对于使用条件较好的公路汽车则可取较大的许用应力。当传递最大转矩时,半轴花键的剪切应力不应超过71.05MPa;挤压应力不应该超过196MPa,半轴单位长度的最大转角不应大于8/m。 5.3 半轴的结构设计及材料与热处理为了使半轴的花键内径不小于其杆部直径,常常将加工花键的端部做得粗些,并适当地减小花键槽的深度,因此花键齿数必须相应地增加,通常取10齿(轿车半轴)至18齿(载货汽车半轴)。半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过渡部分的圆角半径以减小应力集中。重型车半轴的杆部较粗,外端突缘也很大,当无较大锻造设备时可采用两端均为花键联接的结构,且取相同花键参数以简化工艺。在现代汽车半轴上,渐开线花键用得较广,但也有采用矩形或梯形花键的。半轴多采用含铬的中碳合金钢制造,如40Cr,40CrMnMo,40CrMnSi,40CrMoA,35CrMnSi,35CrMnTi等。40MnB是我国研制出的新钢种,作为半轴材料效果很好。半轴的热处理过去都采用调质处理的方法,调质后要求杆部硬度为HB388444(突缘部分可降至HB248)。近年来采用高频、中频感应淬火的口益增多。这种处理方法使半轴表面淬硬达HRC5263,硬化层深约为其半径的13,心部硬度可定为HRC3035;不淬火区(突缘等)的硬度可定在HB248277范围内。由于硬化层本身的强度较高,加之在半轴表面形成大的残余压应力,以及采用喷丸处理、滚压半轴突缘根部过渡圆角等工艺,使半轴的静强度和疲劳强度大为提高,尤其是疲劳强度提高得十分显著。由于这些先进工艺的采用,不用合金钢而采用中碳(40号、45号)钢的半轴也日益增多。5.4 本章小结本章对半轴做了设计计算。在半浮式半轴的设计计算中首先考虑到三种可能的载荷工况。对纵向力(驱动力或制动力)最大时,没有侧向力作用这一工况进行了计算。做了必要的半轴设计计算并进行了校核选取了机械设计、机械制造标准值,对材料和热处理做了必要的说明。第6章 驱动桥壳设计驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮作用在驱动车轮上的牵引力,制动力、侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。因此桥壳既是承载件又是传力件,同时它又是主减速器、差速器及驱动车轮传动装置(如半轴)的外壳。在汽车行驶过程中,桥壳承受繁重的载荷,设计时必须考虑在动载荷下桥壳有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量桥壳还应结构简单、制造方便以利于降低成本。其结构还应保证主减速器的拆装、调整、维修和保养方便。在选择桥壳的结构型式时,还应考虑汽车的类型、使用要求、制造条件、材料供应等。6.1 桥壳的结构型式桥壳的结构型式大致分为可分式、整体式两种。 1.可分式桥壳可分式桥壳的整个桥壳由一个垂直接合面分为左右两部分,每一部分均由一个铸件壳体和一个压入其外端的半轴套管组成。半轴套管与壳体用铆钉联接。在装配主减速器及差速器后左右两半桥壳是通过在中央接合面处的一圈螺栓联成一个整体。其特点是桥壳制造工艺简单、主减速器轴承支承刚度好。但对主减速器的装配、调整及维修都很不方便,桥壳的强度和刚度也比较低。过去这种所谓两段可分式桥壳见于轻型汽车,由于上述缺点现已很少采用。 2.整体式桥壳整体式桥壳的特点是将整个桥壳制成一个整体,桥壳犹如一整体的空心粱,其强度及刚度都比较好。且桥壳与主减速器壳分作两体,主减速器齿轮及差速器均装在独立的主减速壳里,构成单独的总成,调整好以后再由桥壳中部前面装入桥壳内,并与桥壳用螺栓固定在一起。使主减速器和差速器的拆装、调整、维修、保养等都十分方便。整体式桥壳按其制造工艺的不同又可分为铸造整体式、钢板冲压焊接式和钢管扩张成形式三种。6.2 桥壳的受力分析及强度计算我国通常推荐:计算时将桥壳复杂的受力状况简化成三种典型的计算工况(与前述半轴强度计算的三种载荷工况相同)。当牵引力或制动力最大时,桥壳钢板弹簧座处危险端面的弯曲应力和扭转应力为: (6.1) (6.2)式中地面对车轮垂直反力在桥壳板簧座处危险端面引起的垂直平面内的弯矩, ; (6.3) 桥壳板簧座到车轮面的距离;牵引力或制动力(一侧车轮上的)在水平平面内引起的弯矩,;牵引或制动时,上述危险断面所受的转矩,;、分别为桥壳危险断面垂直平面和水平面弯曲的抗弯截面系数;危险断面的抗扭截面系数。 =654 Nm 对于载货车的后驱动桥亦可取0.750.95 41030.19=780 Nm 2861.325 将数据带入式(6.2)、(6.3)得: =500 N/mm2 =201 N/mm2 桥壳许用弯曲应力为300-500N/mm2,许用扭转应力为150-400N/mm2。可锻造桥壳取较小值,钢板冲压焊接桥壳取最大值。6.3 本章小结本章进行了桥壳的受力分析和强度计算。对静弯曲应力下,不同路面冲击载荷作用下和汽车以最大牵引力行驶时及汽车紧急制动时的四种情况下桥壳受力和强度做了计算。第7章 制动器设计汽车制动系是用于使行驶中的汽车减速或停车,是下坡行驶的汽车的车速保持稳定以及使以停驶的汽车在原地(包括在斜坡上)驻留不动的机构。汽车制动系直接影响这汽车行驶的安全性和停车的可靠性。汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区形式的汽车要增设应急制动装置及辅助制动装置;牵引汽车还应有自动制动装置。行车制动装置用于使行驶的汽车强制减速或停车,并使汽车在下短坡时保持适当稳定车速。其驱动机构常采用双回路或多回路结构,以保证其工作可靠。驻车制动装置用于使汽车可靠而无时间限制地停驻在一定位置甚至在斜坡上,它也有助于汽车在坡路上起步。驻车制动装置应采用机械式驱动机构而不用液压或气压驱动,以免其产生故障。7.1鼓式制动器的结构型式及选择鼓式制动器可按其制动蹄的受力情况分类,他们的制动效能、制动鼓的受力平衡状况以及车轮旋转方向对制动效能的影响均不同。 图7.1 鼓式制动器简图 (a)领从蹄式(用凸轮张开);(b)领从蹄式(用制动轮缸张开);(c)双领蹄式(非双向,平衡式);(d)双向领蹄式;(e)单向增力式;(f)双向增力式制动蹄按其张开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向一制动鼓的旋转方向一致的制动蹄,称为领蹄;反之则称为从蹄。鼓式制动器按蹄的属性可分为:领从蹄式制动器;双领蹄式制动器;双向双领蹄式制动器;单向增力式制动器和双向增力式制动器本课题设计哈飞民意微型车后轮鼓式制动器选用领从蹄式制动器,领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,故仍广泛用作中、重型载货汽车的前后轮以及轿车的后轮制动。根据支撑结构及调整方法的不同,领从蹄鼓式液压驱动的车轮制动器又有不同的结构方案,如图7.2所示 图7.2 领从蹄式制动器的结构方案 (a)一般形式;(b)单定支点,轮缸上调整;(c)双固定支点,偏心轴调整;(d)浮动蹄片,支点端调整7.2同步附着系数的分析 1.当时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; 2.当时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; 3.当时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。分析表明,汽车在同步附着系数为的路面上制动(前、后车轮同时抱死)时,其制动减速度为,即,为制动强度。而在其他附着系数的路面上制动时,达到前轮或后轮即将抱死的制动强度这表明只有在的路面上,地面的附着条件才可以得到充分利用。根据相关资料查出轿车同步附着系数0.6取0.70。7.3制动器制动力矩的确定 由轮胎与路面附着系数所决定的后轴最大附着力矩: (7.1)式中 该车所能遇到的最大附着系数(取0.7);q制动强度;车轮有效半径;后轴最大制动力矩;G汽车满载质量;L汽车轴距。其中q=q=1.040.7/1.04+(0.7-0.7) 0.97=0.7故后轴42.45Nm7.4制动器因数计算7.4.1后轮鼓式制动器效能因数 1.领蹄制动蹄因数 鼓式制动器的简化图,如图7.3根据公式 (7.2) h/b=4.042;c/b=0.6775得 图7.3鼓式制动器简化受力图=1.52 2.从蹄制动蹄因数:根据公 (7.3)得=1.017.5鼓式制动器的结构参数与摩擦系数7.5.1 鼓式制动器的结构参数1制动鼓内径D或半径R 当输入力P一定时,制动鼓直径越大,则制动力矩越大,且使制动器的散热性能越好。但直径D的尺寸受到轮辋内径的限制,而且D得增大也使制动鼓的质量增加,是汽车的非悬挂质量增加,不利于汽车的行驶平顺性。制动鼓直径D与轮辋直径Dr之比的一般范围为轿车 D/Dr=0.64-0.74货车 D/Dr=0.700.83按轮辋直径初步确定制动鼓内径D为240mm表7.1 客车与轿车的轮辋直径与制动鼓直径的关系轮辋直径/in121314151620制动鼓内径/mm轿车180200240260客车2202402603003204202制动蹄摩擦衬片的包角及宽度b这两个参数加上已初定的制动鼓内经决定了每个制动器的摩擦面积A,即 A=dB(1+2)/360 mm (7.4) 式中:D制动鼓内径,mm; b制动蹄摩擦衬片宽度,按OC/T 3091999选取,mm; 1,2分别为两蹄的摩擦衬片包角,()。摩擦衬片的包角通常在=90-120范围内选取,实验表明,摩擦衬片包角=90-100是磨损最小,制动鼓得温度也最低,而制动效能则最高。单个摩擦衬片的摩擦面积A有取决于制动鼓半径R、衬片宽度b及包角,即 A=Rb (7.5) 式中,以弧度(rad)为单位,当A,R,确定后,由上市也可初选衬片宽度b的尺寸。 取100,R=120mm ,A取150cm 代入(7.5)得b=50mm 3. 摩擦衬片起始角0摩擦衬片起始角0如图7.4所示。通常是将摩擦衬片布置在制动蹄外援的中央,并令0=90-/2。有时为了适应单位压力的分布情况,将衬片相对于最大压力点对称布置,以改善制动效能和磨损的均匀性。 图7.4 鼓式制动器的主要几何参数4 张开力P的作用线至制动器中心的距离a在满足制动轮缸或凸轮能够布置在制动鼓内的条件下,应使距离a(见图7.4)尽可能地大,以提高其制动效能。初步设计可暂取a=0.8R左右。5 制动蹄支销中心的坐标位置k与c如图7.4所示,制动蹄支销中心的坐标尺寸k应尽可能地小,以使尺寸c尽可能地大,初步设计可暂取c=0.8R左右。6. 不均匀系数及检查蹄有无自锁 =R=120 ,a=96 ,96120=0.8 角度为37 , 不均匀系数=1.47 R=120.86 mm 因为领蹄和从蹄大小尺寸相同,故R=R=120.86 mm 用液力驱动时所需的张开力为,采用领从蹄式制动器F=F F=860.45 N 检查蹄有无自锁:25.2 自锁条件: , R 将相关数据代入上式得有 0.12(0.905+0.30.426)-0.30.12=0.0770 如果f就不会自锁 =1.34f=0.3 所以制动器不会自锁7.5.2 摩擦片摩擦系数选择摩擦片时,不仅希望其摩擦系数要高些,而且还要求其热稳定性好,受温度和压力的影响小。不宜单纯地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求。后者对蹄式制动器是非常重要的。各种制动器用摩擦材料的摩擦系数的稳定值约为0.30.5,少数可达0.7。一般说来,摩擦系数愈高的材料,其耐磨性愈差。在假设理想条件下计算制动器的制动力矩,取f=0.3可使计算结果接近实际值。在选择摩擦材料时,应尽量采用减少污染和对人体无害的材料。7.6制动器零部件的强度校核7.6.1凸轮轴强度校核当汽车制动时,凸轮轴承受转矩作用。其危险断面在花键轴处,现对花键轴的内径进行抗扭强度验算: (7.6)式中:制动凸轮轴所受的转矩; 抗扭截面系数,对于花键轴内径的圆截面,;其中 d花键轴的花键内径; 许用扭转应力。凸轮轴采用45号钢,许用扭转应力=140Mpa 26.4Mpa故符合强度要求。7.6.2铆钉剪切强度校核水平路面满载行驶制动时,地面对前后轮的法相反作用力: 13165.32 N 2122.68 N 地面对车轮的制动力 后轮1485.876 N 前轮=9215.724 N由式(7.7)可算出制动蹄的最大制动力矩Tfmax。如果已知铆钉的数目n,铆钉的直径d及材料,即可验算其剪切应力: (7.7)式中:铆钉材料的许用剪切应力。铆钉数为12个,直径为5mm,材料选用ML2钢,需用剪切应力=145Mpa。 前轮最大制动力矩 2580.4 Nm 后轮最大制动力矩 1323.282 Nm 10.75 MPa 5.51 MPa故符合强度要求。7.6.3支撑销剪切应力计算在算得制动蹄上的法向力,制动力矩,及张开力,后,可求得支撑销承受的支撑力,及支撑销的剪切应力,如下: (7.8)式中:A支撑销的截面积。支撑销的直径为28mm,材料选用45号钢,许用剪切应力错误!未找到引用源。=140Mpa。其中 (7.9)一般来说,S1的值总要大于S2,故仅计算领蹄的支撑销的剪切应力即可:其中 =36876.43 N= =23.5Mpa错误!未找到引用源。=140Mpa,故符合强度要求。7.6.4回位弹簧强度的校核弹簧扭转的最大剪应力可按圆杆扭转时的最大剪切应力公式来计算 (7.10) 图7.5回位弹簧在实际计算中,由于弹簧丝是弯成螺旋形的,因而截面上的扭转剪应力分布情况与圆形圆杆的不同(内侧应力比外侧大),因此引入系数K来修正弹簧强度校核:, 弹簧选用直径d=4mm,D2=20mm,n=25mm,其刚度,对于钢G=80000Mpa,数据代入求得Kp=12.8N/mm。 如图7.5,使用的弹簧的预紧力为12.8N/mm15mm=192N,最大位移时P2max=12.8N/mm25mm=320N。求得 由得选用的拉伸螺旋弹簧强度符合使用要求。7.7制动器的主要结构元件 7.7.1制动鼓制动鼓应有足够的强度,刚度和热容量,与摩擦衬片的材料相配合,又应当有较高的摩擦因数。制动鼓有铸造和组合式两种。铸造制动鼓多选用灰铸铁制造,具有机械加工容易、耐磨、热容量大等优点。为防止制动鼓工作时受载变形,常在制动鼓的外圆周部分铸有加强肋,用来加强刚度和增加散热效果。精确计算制动鼓的壁厚既复杂又困难,所以常根据经验选取,设计中为11mm。7.7.2 制动蹄乘用车和总质量较小的商用车的制动蹄,广泛采用T形钢碾压或用钢板焊接制成;总质量较小的汽车的钢板制成的制动蹄腹板上往往开一条或两条径向槽,使蹄的弯曲刚度小些,其目的是使衬片磨损较为均匀,并减小制动时的尖叫声。制动蹄腹板和翼缘的厚度,乘用车为58mm.本设计取6mm。制动蹄和摩擦片可以铆接,也可以粘接。粘接的优点在于衬片更换前允许磨损的刚度较大,缺点是工艺复杂,且不易更换衬片。铆接的优点是噪声小。设计中选用粘接衬片。7.7.3 摩擦衬(片)块摩擦衬(片)块的材料应满足如下要求14:(1)具有一定的稳定的摩擦因数;(2)具有良好的耐磨性;(3)要用尽可能小的压缩率和膨胀率;(4)制动时不易产生噪声,对环境无污染;(5)应采用对人体无害的摩擦材料;(6)有较高的耐挤压强度和冲击强度,以及足够的抗剪切能力;(7)应将摩擦衬块的导热率控制在一定范围。由金属纤维、粘结剂和摩擦性能调节剂组成的半金属摩阻材料,具有较高的耐热性和耐磨性,特别是因为没有石棉粉尘公害,近年来得到广泛应用15。7.7.4 制动底板制动底板是除制动鼓外制动器各零件的安装基体,应保证各安装零件相互间的正确位置。制动底板承受着制动器工作时的制动反力矩,故应有足够的刚度。为此,由钢板冲压成形的制动底板都具有凹凸起伏的形状。7.7.5 支承二自由度制动蹄的支承,结构简单,并能使制动蹄相对制动鼓自行定位。为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,应使支承位置可调。如采用偏心支承销或偏心轮。支承销由45号钢制造并高频淬火。其支座为可锻铸铁(KTH370-12)或球墨铸铁(QT400-18)件。青铜偏心轮可保持制动蹄腹板上的支承孔的完好性并防止这些零件的腐蚀磨损。具有长支承销的支承能可靠地保持制动蹄的正确安装位置,避免侧向偏摆。有时制动底板上附加一压紧装置,使制动蹄中部靠向制动底板,而在轮缸活塞顶块上或在张开机构调整推杆端部开槽供制动蹄腹板张开端插入,以保持制动蹄的正确位置。7.7.6 制动轮缸是液压制动系统采用的活塞式制动蹄张开机构,其结构简单,在车轮制动器中布置方便。轮缸的缸体有灰铸铁HT250制成。其缸筒为通孔,需搪磨。活塞由铝合金制造。活塞外段压有钢制的开槽顶块,以支承插入槽中的制动蹄腹板端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面的橡胶皮碗密封。多数制动轮缸有两个等直径活塞,少数有四个等直径活塞。7.7.7 本章小结本章介绍了所选制动器的的结构形式、设计计算、制动力的分配及强度计算,最终确定了所设计制动器的各个参数,取得机械设计、机械制造的标准值并满足了强度计算和校核。结 论 此次设计了驱动桥及其各个部件,包括驱动桥的设计、主减速器的设计、差速器的设计、半轴的设计和桥壳的设计。 所选择的主减速比在满足汽车在给定使用的条件下,具有最佳的动力性和燃料经济性。差速器在保证左、右驱动车轮能以汽车动力学所要求的差速滚动外并能将转矩平稳而连续不断地传递给左、右驱动车轮。驱动桥各零部件在保证其强度、刚度、可靠性及使用寿命的前提下,减小簧下质量。初步改善了汽车的平顺性。选用的结构简单,维修也比较方便,制造容易。但同时,在驱动桥的设计上还存在着不足,有待解决。参 考 文 献1. 刘惟信. 汽车设计M.北京:清华大学出版社,2001 2. 刘惟信. 汽车车桥设计M.北京:清华大学出版社,20043. 刘惟信. 汽车制动系的结构分析于设计计算M.北京:清华大学出版社,20044. 余志生. 汽车理论M.北京:机械工业出版社,20005. 陈家瑞. 汽车构造.下册M.北京:机械工业出版社,20056. 哈飞汽车股份有限公司.哈飞民意系列乘用车维修手册M.北京:人民交通出版社,20037. 汽车工程手册编辑委员会.汽车工程手册M:设计篇.北京:人民交通出版社,2001.8. 汽车工程手册编辑委员会.汽车工程手册M:基础篇.北京:人民交通出版社,2001.9. 余志生. 汽车理论M. 北京:机械工业出版社, 2000.10. 杨朝会,王丰元,马浩.基于有限元方法的载货汽车驱动桥壳分析J.农业装备与车辆工程.2006,(10):19-2111. 胡迪青,易建军,胡于进,李成刚.基于模块化的越野汽车驱动桥设计及性能综合评价J.机械设计与制造工程,2000,(3):8-11.12. 唐善政.汽车驱动桥噪声的试验研究与控制J.汽车科技,2000,(3):14-2413. 石琴,陈朝阳,钱锋,温千红汽车驱动桥壳模态分析J.上海汽车,2001,(4):1-3,8.14. 林军,周晓军,陈子辰,陈庆春.汽车驱动桥总成在线自动检测系统J.机械与电子,2000,(4):20-21.15. 王聪兴,冯茂林. 现代设计方法在驱动桥设计中的应用J.公路与汽运,2004,(4):6-8.16. 杨锁望,韩愈琪,杨钰.矿用自卸驱动桥壳结构分析与改进设计J.专用汽车,2005,(1):21-23.17. 王铁,张国忠,周淑文.路面不平度影响下的汽车驱动桥动载荷J.东北大学学报,2003,(1):50-53.18. 常曙光.重载汽车驱动桥齿轮用钢的成分设计J.现代零部件,2006,(1):90-95.19. 徐灦. 机械设计手册M. 北京:机械工业出版社,1991. 20. 梁德本,叶玉驹机械制图手册M第3版北京:机械工业出版社,200221. 机械设计手册委员会编.机械设计手册第3卷M.北京:机械工业出版社,200422. PAARNG State Safety Office. High Mobility Multipurpose Wheeled Vehicle Safety Guide(HMMWV) M. Annville: Department of Military & Veteran Affairs State Safety Office, 200523. Walz M C, Trends in the Static Stability Factor of Passenger Cars, Light Trucks, and Vans R. Washington ,DC: National Highway Traffic Safety Administration,200524.ARCCA, incorporated. Occupant Crash Protection Hand-book for Tactical Ground Vehicles(Light, Medium and Heavy Duty) M. Washington, DC: Department of Army, 2000致 谢在本文即将完成之际,首先感谢我的指导老师臧杰老师,从选题到设计的展开到设计的完成,一直得到臧老师的支持和鼓励,她渊博的学识、严谨的治学态度都给我留下了深刻的印象。通过这次的设计,我更深刻地了解了机械设计、机械制造的各方面知识,对汽车设计有了全新且比较全面的深刻认识,达到了前所未有的高度,并锻炼了独立思考解决问题的能力。再次向臧老师表示衷心的感谢!感谢帮助我的所有老师和同学,他们在设计过程中给我提出了宝贵建议和CAD的指导。感谢宿舍的朋友一直以来对我的关心和支持。感谢汽车工程系所有老师和同学的帮助和勉励。同窗之谊,终生难忘!感谢我的家人多年来对我无微不至的关怀、始终如一的支持,感谢他们对我的鼓励和生活上的诸多照顾,感谢他们督促我接受良好的教育。最后,向参加设计审阅、答辩的专家和老师表示感谢。 附 录The domestic and foreign development status and present situation of introduction to adapt to the improvement of the socialist market economy system requirements and accession to the wto and the development of automobile industry of the new situation, promote the adjustment and upgrading of industrial structure of automobile, improve the international competitiveness of the automotive industry, automotive products to satisfy consumers growing demand, promoting the healthy development of auto industry, automobile industry development policy. Through the implementation of this policy, Chinas automotive industry development in 2010 as pillar industry of the national economy, and to achieve the comprehensive construction affluent societys goal to make more contribution. The government functional departments according to the regulations and technical specifications of the mandatory, automobile, farm transporter
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:HFJ1020A驱动桥制动器的设计【汽车毕业设计含8张CAD图+说明书论文2.7万字53页,开题报告,任务书】
链接地址:https://www.renrendoc.com/p-522260.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!