




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题27 统计1.【2017课标3,理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】故选D.【考点】 折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.2.【2017山东,理5】为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为已知,该班某学生的脚长为24,据此估计其身高为(A) (B) (C) (D)【答案】C3.【2014高考广东卷.理.6】已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A., B., C., D.,【答案】A【解析】由题意知,样本容量为,其中高中生人数为,高中生的近视人数为,故选A.【考点定位】本题考查分层抽样与统计图,属于中等题.【名师点晴】本题主要考查的是分层抽样和统计图,属于中等题解题时要抓住关键字眼“样本容量”,否则很容易出现错误解本题需要掌握的知识点是分层抽样,即4. 【2016高考新课标3理数】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图图中点表示十月的平均最高气温约为,点表示四月的平均最低气温约为下面叙述不正确的是( )(A)各月的平均最低气温都在以上 (B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同 (D)平均气温高于的月份有5个【答案】D【解析】考点:1、平均数;2、统计图【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B5. 【 2014湖南2】对一个容量为的总体抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为,则( )A. B. C. D. 【答案】D【解析】根据抽样调查的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即,故选D.【考点定位】抽样调查【名师点睛】本题主要考查了简单随机抽样,分层抽样,系统抽样,解决问题的关键是根据抽样的原理进行具体分析求得对应概率的关系,属于基础题目.6. 【2016高考山东理数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20), 20,22.5), 22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56(B)60(C)120(D)140【答案】D【解析】试题分析:由频率分布直方图知,自习时间不少于22.5小时为后三组,有(人),选D.考点:频率分布直方图7.【2015高考山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量服从正态分布 ,则 ,。)(A)4.56% (B)13.59% (C)27.18% (D)31.74%【答案】B【解析】用表示零件的长度,根据正态分布的性质得: , 故选B.【考点定位】正态分布的概念与正态密度曲线的性质.【名师点睛】本题考查了正态分布的有关概念与运算,重点考查了正态密度曲线的性质以及如何利用正态密度曲线求概率,意在考查学生对正态分布密度曲线性质的理解及基本的运算能力.8. 【2014山东.理7】 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为12,13),13,14),14,15),15,16),16,17,将其按从左到右的顺序分别编号为第一组,第二组,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6 B.8 C.12 D.18【答案】9. 【2015高考陕西,理2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A167 B137 C123 D93【答案】B【解析】该校女老师的人数是,故选B【考点定位】扇形图【名师点晴】本题主要考查的是扇形图,属于容易题解题时一定要抓住重要字眼“女教师”,否则很容易出现错误扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形图可以很清晰地表示各部分数量同总数之间的关系10. 【2016年高考北京理数】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球 B.乙盒中红球与丙盒中黑球一样多 C.乙盒中红球不多于丙盒中红球 D.乙盒中黑球与丙盒中红球一样多【答案】C【解析】考点:概率统计分析.【名师点睛】本题将小球与概率知识结合,创新味十足,是能力立意的好题.如果所求事件对应的基本事件有多种可能,那么一般我们通过逐一列举计数,再求概率,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏.另外注意对立事件概率公式的应用.考点:古典概型及其概率计算公式.11. 【2014高考陕西版理第9题】设样本数据的均值和方差分别为1和4,若(为非零常数, ),则的均值和方差分别为( )(A) (B) (C) (D)【答案】【解析】试题分析:由题得:;的均值和方差分别为:均值方差故选考点:均值和方差.【名师点晴】本题主要考查的是样本的均值和方差等知识,属于中档题;解题时可以根据均值和方差的定义去计算,也可以直接利用已知的结论或公式得到结果,利用定义时运算量大,也容易出现不必要的错误。12.【2015高考新课标2,理3】根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是( )A逐年比较,2008年减少二氧化硫排放量的效果最显著B2007年我国治理二氧化硫排放显现C2006年以来我国二氧化硫年排放量呈减少趋势D2006年以来我国二氧化硫年排放量与年份正相关【答案】D13. 【2014高考重庆理第3题】已知变量与正相关,且由观测数据算得样本平均数,则由该观测的数据算得的线性回归方程可能是( ) 【答案】A【解析】14. 【2015高考重庆,理3】重庆市2013年各月的平均气温()数据的茎叶图如下: 则这组数据的中位数是( )A、19 B、20 C、21.5 D、23 【答案】B.【解析】从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B.【考点定位】本题考查茎叶图的认识,考查中位数的概念.【名师点晴】本题通过考查茎叶图的知识,考查样本数据的数字特征,考查学生的数据处理能力.15.【2015高考安徽,理6】若样本数据,的标准差为,则数据,的标准 差为( ) (A) (B) (C) (D)【答案】C【解析】设样本数据,的标准差为,则,即方差,而数据,的方差,所以其标准差为.故选C.【考点定位】1.样本的方差与标准差的应用.【名师点睛】已知随机变量的均值、方差,求的线性函数的均值、方差和标准差,可直接用的均值、方差的性质求解.若随机变量的均值、方差、标准差,则数的均值、方差、标准差.16. 【2014湖北卷4】根据如下样本数据3456784.02.50.5得到的回归方程为,则( )A. , B. , C. , D. , 【答案】B【解析】试题分析:依题意,画散点图知,两个变量负相关,所以,.选B.17. 【2015高考湖北,理2】我国古代数学名著九章算术有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A134石 B169石 C338石 D1365石【答案】B【解析】依题意,这批米内夹谷约为石,选B.【考点定位】用样本估计总体.【名师点睛】九章算术是中国古代第一部数学专著,是算经十书中最重要的一种.该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就.本题“米谷粒分”是我们统计中的用样本估计总体问题.18. 【2015高考湖北,理4】设,这两个正态分布密度曲线如图所示下列结论中正确的是( )A B C对任意正数, D对任意正数,【答案】C【考点定位】正态分布密度曲线.【名师点睛】正态曲线的性质曲线在轴的上方,与轴不相交曲线是单峰的,它关于直线对称曲线在处达到峰值.曲线与轴之间的面积为1.当一定时,曲线随着的变化而沿轴平移,如图甲所示一定时,曲线的形状由确定越大,曲线越“矮胖”,总体分布越分散;越小曲线越“瘦高”总体分布越集中如图乙所示19.【2015高考福建,理4】为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入(万元)8.28.610.011.311.9支出 (万元)6.27.58.08.59.8根据上表可得回归直线方程 ,其中 ,据此估计,该社区一户收入为15万元家庭年支出为( )A11.4万元 B11.8万元 C12.0万元 D12.2万元【答案】B【解析】由已知得(万元),(万元),故,所以回归直线方程为,当社区一户收入为15万元家庭年支出为(万元),故选BD该班级男生成绩的平均数小于该班女生成绩的平均数20 .(2013福建,理4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:40,50),50,60),60,70),70,80),80,90),90,100加以统计,得到如图所示的频率分布直方图已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A588 B480 C450 D120【答案】B【解析】由频率分布直方图知4060分的频率为(0.0050. 015)100.2,故估计不少于60分的学生人数为600(10.2)480.【名师点睛】本题是基础题,主要考查频率分布直方图及简单数据处理能力和计算问题,在这里特别提醒学生注意:频率分布直方图的纵坐标不是频率,而是频率/组距,每个小矩形的面积才是相对应的频率,这一点容易出错.21. 【2015湖南理2】在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )A.2386 B.2718 C.3413 D.4772附:若,则,【答案】C.【解析】试题分析:根据正态分布的性质,故选C.22.【2017江苏,3】 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.【答案】18【解析】所求人数为,故答案为18【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即niNinN.23. 【2014江苏,理6】某种树木的底部周长的取值范围是,它的频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm.【答案】24【解析】由题意在抽测的60株树木中,底部周长小于的株数为【考点定位】频率分布直方图【名师点晴】在频率分布直方图中,纵轴表示,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1. 在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和24.【2015江苏高考,2】已知一组数据4,6,5,8,7,6,那么这组数据的平均数为_.【答案】6【解析】【考点定位】平均数25. 【2014天津,理9】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_名学生【答案】60【解析】试题分析:应从一年级抽取名考点:等概型抽样中的分层抽样方法【名师点睛】本题考查分层抽样相关知识,本题属于基础题,抽样方法包括简单随机抽样、系统抽样、分层抽样三种,分层抽样就是就是按着各层次所占比例抽取样本,抽样方法在高考题中偶有出现,比较简单,容易得分,深受考生欢迎.26.【2015高考广东,理13】已知随机变量服从二项分布,若,则 .【答案】【解析】依题可得且,解得,故应填入【考点定位】二项分布的均值和方差应用【名师点睛】本题主要考查二项分布的均值和方差应用及运算求解能力,属于容易题,解答此题关键在于理解熟记二项分布的均值和方差公式,并运用其解答实际问题27. 【2016高考江苏卷】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是_. 【答案】0.1【解析】试题分析:这组数据的平均数为,故答案应填:0.1,考点:方差28. 【2014年.浙江卷.理12】随机变量的取值为0,1,2,若,则_.答案:解析:设时的概率为,则,解得,故考点:方差.【名师点睛】本题主要考查相互独立事件的概率公式的应用,解决问题的关键是根据所给条件求解对应事件的概率,然后求方差即可;求相互独立事件同时发生的概率的方法:(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难以入手时,可从其对立事件入手计算29. 【2016高考上海理数】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_(米).【答案】1.7630. 【2015湖南理12】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,若将运动员按成绩由好到差编为号,再用系统抽样方法从中抽取7人,则其中成绩在区间上的运动员人数是 .【答案】.【解析】试题分析:由茎叶图可知,在区间的人数为,再由系统抽样的性质可知人数为人.【考点定位】1.系统抽样;2.茎叶图.【名师点睛】本题主要考查了系统抽样与茎叶图的概念,属于容易题,高考对统计相关知识的考查,重点在于其相关的基本概念,如中位数,方差,极差,茎叶图,回归直线等,要求考生在复习时注意对这些方面的理解与记忆.31.【2017课标1,理19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,其中为抽取的第个零件的尺寸,用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01)附:若随机变量服从正态分布,则,【解析】试题解析:(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此.的数学期望为.(2)(i)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由,得的估计值为,的估计值为,由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查.剔除之外的数据9.22,剩下数据的平均数为,因此的估计值为10.02.,剔除之外的数据9.22,剩下数据的样本方差为,因此的估计值为.【考点】正态分布,随机变量的期望和方差.32.【2017课标II,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率分布直方图如下:(1) 设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50kg箱产量50kg旧养殖法新养殖法(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附: 【答案】(1);(2) 有的把握认为箱产量与养殖方法有关;(3)。【解析】旧养殖法的箱产量低于的频率为,故的估计值为0。62新养殖法的箱产量不低于的频率为,故的估计值为0。66因此,事件A的概率估计值为。(2)根据箱产量的频率分布直方图得列联表箱产量箱产量旧养殖法6238新养殖法3466由于,故有的把握认为箱产量与养殖方法有关。(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于的直方图面积为,箱产量低于的直方图面积为,故新养殖法箱产量的中位数的估计值为。【考点】 独立事件概率公式;独立性检验原理;频率分布直方图估计中位数。33.【2016年高考四川理数】(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5),0.5,1),4,4.5)分成9组,制成了如图所示的频率分布直方图.(I)求直方图中a的值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(III)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.【答案】();()36000;()2.9【解析】试题分析:()由高组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;()利用高组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率样本总数=频数,计算所求人数;()将前6组的频率之和与前5组的频率之和进行比较,得出2.5x0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.730.85,所以2.5x3由0.3(x2.5)=0.850.73,解得x=2.9所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准考点:频率分布直方图.34.【2015高考北京,理16】,两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:组:10,11,12,13,14,15,16组:12,13,15,16,17,14, 假设所有病人的康复时间互相独立,从,两组随机各选1人,组选出的人记为甲,组选出的人记为乙() 求甲的康复时间不少于14天的概率;() 如果,求甲的康复时间比乙的康复时间长的概率;() 当为何值时,两组病人康复时间的方差相等?(结论不要求证明)【答案】(1),(2),(3)或【解析】试题分析:针对甲有7种情况,康复时间不少于14天有3种情况,概率为;如果,甲、乙随机各取一人有49种情况,用列举法列出甲的康复时间比乙的康复时间长的情况有10种,概率为,由于A组数据为10,11,12,13,14,15,16;B组数据调整为,12,13,14,15,16,17,或12,13,14,15,16,17,由于,两组病人康复时间的方差相等,即波动相同,所以或.试题解析:()甲有7种取法,康复时间不少于14天的有3种取法,所以概率;() 如果,从,两组随机各选1人,组选出的人记为甲,组选出的人记为乙共有49种取法,甲的康复时间比乙的康复时间长的列举如下:(13,12),(14,12),(14,13),(15,12),(15,13),(15,14),(16,12)(16,13),(16,15),(16,14)有10种取法,所以概率.()把B组数据调整为,12,13,14,15,16,17,或12,13,14,15,16,17,可见当或时,与A组数据方差相等.(可利用方差公式加以证明,但本题不需要)考点:1、古典概型;2、样本的方差35.【2016高考新课标3理数】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;(II)建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量附注:参考数据:,2.646.参考公式:相关系数 回归方程 中斜率和截距的最小二乘估计公式分别为:【答案】()理由见解析;()1.82亿吨【解析】试题解析:()由折线图这数据和附注中参考数据得,因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系.()由及()得,所以,关于的回归方程为:.将2016年对应的代入回归方程得:,所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.考点:线性相关与线性回归方程的求法与应用36.【2015高考新课标2,理18】(本题满分12分)某公司为了解用户对其产品的满意度,从,两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79()根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);()根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”假设两地区用户的评价结果相互独立根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率【答案】()详见解析;()【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数学课《几何图形变换与性质》教学实践
- 农村科技研发与应用推广合同
- 时间沙漏计时器课件
- 夏魂赋得白雪有感诗词比较与赏析高中语文教案
- 早期智力水平能力课件
- 企业文件存档与分类管理标准模板
- 早教老师培训知识总结课件
- 农业新型设施建设与改造协议
- 2025年山东省公务员录用考试行测真题模拟试卷
- 小区绿化养护及改造合同
- 直播助理培训课件
- 监理公司质量管理制度
- 《小学教师专业发展》课件-第五章 基于合作的教师发展
- 2025年中国白胡椒行业市场运营现状及投资方向研究报告
- 2025年高考语文全国Ⅱ卷试卷评析及备考策略(课件)
- 通海翡翠华庭建设项目 水土保持方案报告表
- 乡村治理与乡村振兴规划
- T/CCMA 0206-2024混凝土机械液压平衡阀
- 手阳明大肠经课件
- 职场高效沟通与结构化表达技巧培训
- 2025-2030中国红枣深加工行业市场深度调研及投资策略与投资前景预测研究报告
评论
0/150
提交评论