


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二课时(一)复习1、复习矩形与平行四边形及四边形的从属关系2、复习矩形的定义,并指出由平行四边形得到矩形需添加一个独立条件,思考:由四边形得到矩形需要添加几个独立条件?3、复习矩形的性质,并指出性质定理1可改为“矩形中三个角是直角”这样三个独立条件4、在复习提问的同时,逐步完成下图:5、逆向探索矩形的判定方法(1)猜想矩形性质的逆命题成立。 有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形(2)证明猜想,得到两个判定定理(3)由矩形和平行四边形及四边形的从属关系将矩形的判定方法分为两类: 从四边形出发增加三个特定的独立条件; 从平行四边形出发增加一个特定的独立条件(二)应用举例例1 下列各句判定矩形的说法是否正确?为什么?(1)对角线相等的四边形是矩形;( )(2)对角线互相平分且相等的四边形是矩形;()(3)有一个角是直角的四边形是矩形;()(4)有四个角是直角的四边形是矩形;()(5)四个角都相等的四边形是矩形S;()(6)对角线相等,且有一个角是直角的四边形是矩形;()(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(8)对角线相等且互相垂直的四边形是矩形()说明:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与定理不同,则需要利用定义和判定定理证明或举反例,才能下结论例2已知 ABCD的对角线AC和BD相交于点O,AOB是等边三角形,AB 4 cm求这个平行四边形的面积分析:首先根据AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形(如图个4-37),再利用勾股定理计算边长,从而得到面积为例3 已知:如图4-38在 ABCD中,M为BC中点,MAD=MDA.求证:四边形 ABCD是矩形分析:根据定义去证明一个角是直角,由ABMDCM(SSS)即可实现。例4 已知:如图4-39(a), ABCD的四个内角平分线相交于点E,F,G,H求证:EGFH分析:要证的EG,FH为四边形EFGH的对角线,因此只需证明四边形EFGH为矩形,而题目可分解出基本图形:如图4-39(b),因此,可选用“三个角是直角的四边形是矩形”来证明练习 已知:如图 440,在ABC中,C 90, CD为中线,延长CD到点E,使得 DECD连结AE,BE,则四边形ACBE为矩形(三)师生共同小结 矩形的判定方法分两类:从四边形来判定和从平行四边形来判定常用的判定方法有三种:定义和两个判定定理遇到具体题目,可根据条件灵活选用恰当的方法(四)作业 课本习题18.2第2、3题五、板书设计意图整个板面分三部分:左边上部展示平行四边形在一定条件下转化矩形的直观模型;下部书写定义、定理、推论,使本课知识清晰、完整地展现
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自考专业(计算机信息管理)考试黑钻押题含答案详解(轻巧夺冠)
- 三农服务体系升级方案设计书
- 中级银行从业资格之中级银行业法律法规与综合能力综合检测提分完整答案详解
- 咨询工程师高频难、易错点题附完整答案详解(全优)
- 电竞公司薪酬体系管理办法
- 注册公用设备工程师通关题库及完整答案详解一套
- 自考专业(电子商务)试题预测试卷【考点提分】附答案详解
- 自考专业(工商企业管理)练习题附参考答案详解【完整版】
- 重难点自考专业(学前教育)含答案【基础题】
- 农产品智慧物流系统创新创业项目商业计划书
- 中医辨证施护课件
- 学校十五五规划(同名11527)
- 高中心理健康测试题及答案大全
- 小学二年级上册《健康成长》全册教学设计
- 蓝色简约风医学生职业生涯规划展示模板
- 土建安全员c类考试试题及答案
- T/SHPTA 031-2022电缆和光缆用复合防护尼龙12护套料
- 高中生国防教育
- 汕头侨乡文化课件下载
- 体育公园大众冰雪运动项目配置指南 DB23T 3943-2025
- 值长面试题及答案
评论
0/150
提交评论