24.1一元二次方程.docx_第1页
24.1一元二次方程.docx_第2页
24.1一元二次方程.docx_第3页
24.1一元二次方程.docx_第4页
24.1一元二次方程.docx_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24.1一元二次方程1.理解一元二次方程的概念.2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.3.体会一元二次方程是刻画实际问题的重要数学模型.4.理解一元二次方程解的概念.1.通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2.体会数学来源于生活,又回归生活的理念.3.由设未知数、列方程向学生渗透方程的思想,从而进一步培养学生数学思维能力.1.培养学生主动探究知识、自主学习和合作交流的意识.2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.3.体会数学知识与现实世界的联系.【重点】一元二次方程的概念及一般形式.【难点】1.由具体问题抽象出一元二次方程的转化过程.2.正确识别一般式中的“项”及“系数”.【教师准备】多媒体课件.【学生准备】预习教材P3435.导入一:【课件展示】教材章前图,请同学们阅读章前问题,并回答下列问题:一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离也是1 m吗?你能列方程解决这个问题吗?学生分析等量关系:AB2=AC2+BC2.设梯子的底端在地面上滑动的距离x m,于是得方程102=(8-1)2+(6+x)2.整理得x2+12x-15=0.【问题】这个方程是不是我们前边学过的方程?导入二:【课件展示】观察下列方程:(1)3x-2=0,(2)x2+2x-3=0,(3)12x+52=0,(4)23x2-5=0.哪些是我们学过的一元一次方程?其他方程与一元一次方程有什么不同?【师生活动】复习方程、一元一次方程及方程的解的概念.【学生活动】小组合作交流,观察新方程,分析元和次,尝试为新方程定义.设计意图让学生在实际问题中建立一元二次方程模型,体会数学来源于生活,通过复习一元一次方程的概念,让学生用类比的方法从已有的知识体系中自然地构建出新知识.过渡语方程是一类重要的数学模型,在现实生活中具有广泛的应用.在学习了一元一次方程、二元一次方程组和分式方程的基础上,现在我们来学习一元二次方程.共同探究一教材中观察与思考中的实际问题,设未知数,建立方程模型【课件展示】如图所示,某学校要在校园内墙边的空地上修建一个长方形的存车处,存车处的一面靠墙(墙长22 m),另外三面用90 m长的铁栅栏围起来.如果这个存车处的面积为700 m2,求这个长方形存车处的长和宽.思路一教师引导学生思考并回答:长方形存车处的长与宽之间的数量关系为,该问题中的等量关系为.(1)设长方形存车处的宽(靠墙的一边)为x m,则它的长为m,长方形存车处的面积为.由此,我们可以列出方程,化简得.(2)设长方形存车处的长(与墙垂直的一边)为x m,则它的宽为m,长方形存车处的面积为.由此,我们可以列出方程,化简得.【师生活动】教师引导分析,学生回答,通过所设未知数,根据题意列出方程,老师点评并分析如何建立一元二次方程的数学模型,整理所列出的方程.【课件展示】解:(1)设长方形存车处的宽(靠墙的一边)为x m,则它的长为90-x2 m.根据题意,可得方程90-x2x=700.整理,得x2-90x+1400=0.(2)设长方形存车处的长(与墙垂直的一边)为x m,则它的宽为(90-2x)m.根据题意,可得方程(90-2x)x=700.整理,得x2-45x+350=0.思路二小组活动,共同探究,思考下列问题:(1)分析题意,题中的已知条件是什么?(2)分析题意,题中的等量关系是什么?(3)如何设未知数,根据题中等量关系怎样列方程?(4)分析下面小明和小亮列方程的做法,他们的解题思路和所列方程是否正确?【课件展示】小明的做法:设长方形存车处的宽(靠墙的一边)为x m,则它的长为90-x2 m.根据题意,可得方程90-x2x=700.整理,得x2-90x+1400=0.小亮的做法:设长方形存车处的长(与墙垂直的一边)为x m,则它的宽为(90-2x)m.根据题意,可得方程(90-2x)x=700.整理,得x2-45x+350=0.【师生活动】教师先出示问题(1)(3),学生讨论交流后出示问题(4),学生再进行交流.教师在巡视过程中及时解决疑难问题,学生讨论后小组展示结果,教师及时补充和点评.设计意图师生共同分析探讨实际问题中的等量关系,列出方程,为引出一元二次方程的概念做铺垫,同时提高学生建立方程模型解决生活中实际问题的能力.共同探究二共同归纳概念请口答下面问题.(1)上面方程整理后含有几个未知数?(2)上面方程中未知数x的最高次数是几次?(3)方程两边都是整式吗?(4)你能类比一元一次方程的概念,给出一元二次方程的定义吗?【学生活动】小组合作交流,类比一元一次方程定义,尝试给出一元二次方程的定义.老师点评归纳:一元二次方程满足三个条件:(1)都只含一个未知数x;(2)它们的最高次数都是2次;(3)方程两边都是整式.【课件展示】只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.设计意图学生通过合作交流,类比一元一次方程的定义得出一元二次方程的定义,体会类比思想在数学中的应用,同时培养学生归纳总结能力及合作交流能力.过渡语我们了解了一元二次方程的有关概念,现在同学们比一比谁理解得更透彻吧.【课件展示】请抢答下列各式是否为一元二次方程:(1)2x2=9;(2)2x2-1=3y;(3)4x2+3=2x;(4)1x2-1+3x=0;(5)5x2-2x+3;(6)2x(x+2)=5x-2;(7)3x(x-1)=3x2-5.【师生活动】学生以抢答的形式来完成该题,并让学生说出判断理由.教师对学生给出的答案作出点评和归纳,并让学生归纳判断易错点先化简再判断.设计意图通过抢答进一步强化一元二次方程的概念满足的三个条件,同时提高学生学习数学的兴趣和积极性.共同探究三一元二次方程的一般形式【思考1】类比一元一次方程的一般形式,你能不能写出一元二次方程的一般形式?【课件展示】一元二次方程的一般形式为:ax2+bx+c=0(a0).其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【思考2】(1)任何一个一元二次方程是否都可以整理成一般形式?(2)一元二次方程的二次项系数为什么不能为0?(任何一个一元二次方程都能化成一般形式;当一元二次方程的二次项系数a=0,b0时,方程为一元一次方程)【师生活动】学生独立思考后,小组合作交流,教师对学生的展示进行点评、归纳.设计意图通过概括一元二次方程的一般形式,让学生理解掌握数学符号语言在数学中的应用,更深入地理解一元二次方程的概念,同时强调了一元二次方程概念中的易错点.过渡语我们又知道了一元二次方程的一般形式,试试我们能不能完成以下问题.【课件展示】做一做:将下列一元二次方程化为一般形式,并指出它们的二次项系数、一次项系数和常数项.(1)4x2=3(x+4);(2)(2x-3)(3x-2)=10;(3)x+222x-33=7;(4)(2x-1)(2x+1)=(3x+1)2.解析一元二次方程的一般形式是ax2+bx+c=0(a0),因此,通过去分母、去括号、移项、合并同类项等法则先将一元二次方程进行整理,再根据有关概念求解.解:(1)原方程可化为:4x2-3x-12=0.其中二次项系数为4,一次项系数为-3,常数项为-12.(2)原方程可化为:6x2-13x-4=0.其中二次项系数为6,一次项系数为-13,常数项为-4.(3)原方程可化为:2x2+x-48=0.其中二次项系数为2,一次项系数为1,常数项为-48.(4)原方程可化为:5x2+6x+2=0.其中二次项系数为5,一次项系数为6,常数项为2.追问:求一元二次方程的二次项系数、一次项系数及常数项时应注意什么?(一是先化简成一般形式;二是书写系数时不要遗漏前边的符号)【师生活动】学生独立思考回答,教师进行点评归纳.设计意图通过做一做,让学生了解求一元二次方程的项或项的系数时,先化成一元二次方程一般形式再求解,加深对一元二次方程一般形式的理解.共同探究四一元二次方程的根【思考】1.什么是一元二次方程的解?(使一元二次方程两边相等的未知数的值,叫做一元二次方程的解)板书:一元二次方程的解也叫做这个方程的根.2.如何判定一个数值是不是一元二次方程的根?(将这个数值代入一元二次方程,如果方程左右两边相等,则该数值是方程的根;如果方程左右两边不相等,则该数值不是方程的根)【课件展示】做一做:在下列各题中,括号内未知数的值,哪些是它前面方程的根?(1)x2-3x-4=0(x=0,x=-1,x=4);(2)(x+2)(x-2)=12(x=-1,x=-4,x=4);(3)2y2-y-1=0y=0,y=1,y=-12.【师生活动】学生独立完成并回答,教师点评.设计意图通过做一做让学生真正理解和掌握一元二次方程的根的概念.知识拓展1.判断一个方程是一元二次方程需同时满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.同时要注意二次项系数不能为0.2.一元二次方程的一般形式的特点是方程的右边为0,左边是关于未知数的二次整式.3.一元二次方程的项或系数是针对一元二次方程的一般形式而言的,所以写项或系数时,要先化成一般形式,并且都包括前边的符号.4.判断一个数值是不是一元二次方程的根的方法:将这个数值代入一元二次方程,如果方程左右两边相等,则该数值是方程的根;如果方程左右两边不相等,则该数值不是方程的根.5.如果已知a是一元二次方程的根,把x=a代入方程,方程左右两边相等,可以求待定系数的值,整体思想是常用的数学思想.1.一元二次方程概念需要满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.2.一元二次方程的一般形式是ax2+bx+c=0(a0),易错点是忽略强调a0.3.确定一元二次方程的项与系数时一定先化成一般形式,书写时应注意包括前边的符号.4.一元二次方程的解也叫一元二次方程的根.5.根据实际问题列一元二次方程的关键是读懂题意,找到题目中的等量关系.6.本节课用到了类比思想、整体思想解决数学问题.1.在下列方程中,一元二次方程的个数是()2x2+5=0;ax2+bx+c=0;(x-1)(x+2)=x2-1;3x2-2=0;2x2-1=x.A.2个B.3个C.4个D.5个解析:一元二次方程必须满足三个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,同时注意二次项系数不为0.满足条件,中二次项系数可能为0,化简后不含有二次项,不符合定义.故选B.2.一元二次方程7x2-2x=0的二次项、一次项、常数项依次是()A.7x2,2x,0B.7x2,-2x,无常数项C.7x2,0,2xD.7x2,-2x,0解析:一元二次方程ax2+bx+c=0(a0)中ax2是二次项,bx是一次项,c是常数项.所以该方程中二次项、一次项、常数项依次是7x2,-2x,0.故选D.3.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.-3B.3C.0D.0或3解析:把x=2代入方程,得4+2m+2=0,解得m=-3.故选A.4.若(m-2)xm2-2=-3是一元二次方程,则m=.解析:根据一元二次方程的概念知未知数x的最高次数是2,且二次项系数不为0,得m2-2=2,m-20,解得m=-2.故填-2.5.根据题意填空.(1)如果两个连续奇数的积是323,求这两个数,如果设其中较小的一个奇数为x,你能列出求解x的方程吗?,一般形式为.(2)如图所示,在宽为20 m,长30 m的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500 m2,若设路宽为x m,则可列方程为,一般形式为.解析:(1)根据两个奇数的积是323,列方程,得x(x+2)=323,化简,得x2+2x-323=0;(2)将两条道路平移到矩形的边上,矩形的长为(30-x)m,宽为(20-x)m,根据余下的耕地面积为500 m2,列方程,得(20-x)(30-x)=500,化简,得x2-50x+100=0.答案:(1)x(x+2)=323x2+2x-323=0(2)(20-x)(30-x)=500x2-50x+100=024.1一元二次方程共同探究一教材中观察与思考中的实际问题,设未知数,建立方程模型共同探究二共同归纳概念共同探究三一元二次方程的一般形式共同探究四一元二次方程的根一、教材作业【必做题】教材第36页习题A组第1,2,3题.【选做题】教材第36页习题B组第1,2题.二、课后作业【基础巩固】1.下列方程为一元二次方程的是()A.1-x2=0B.2(x2-1)=3yC.1x2-1x=0D.(x-3)2=(x+3)22.已知x=-1是方程ax2+bx+c=0的一个根,则ab+cb等于()A.1B.-1C.0D.23.关于x的方程xm-3-2x+1=0是一元二次方程,则m=.4.若关于x的一元二次方程(m-1)x2+2x+m2-1=0的常数项为0,则m的值为.5.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是.6.如图所示,某小区规划在一个长30 m,宽20 m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78 m2,那么通道的宽应设计成多少米?设通道的宽为x m,由题意列方程得.7.将下列方程化成一元二次方程的一般形式,并指出各项系数.(1)(2x-1)2=7;(2)3x2+5(2x+1)=0.【能力提升】8.若关于x的方程(k2-4)x2+k-1x+5=0是一元二次方程,则k的取值范围是.9.已知x=2是关于x的方程32x2-2a=0的一个解,则一次函数y=ax-1的图像不经过第象限.10.(2015菏泽中考)已知m是方程x2-x-1=0的一个根,求m(m+1)2-m2(m+3)+4的值.【拓展探究】11.已知关于x的方程(m2-1)x2-(m+1)x+m=0.(1)x为何值时,此方程是一元一次方程?(2)x为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.【答案与解析】1.A(解析:B中含有两个未知数,C中方程不是整式方程,D中方程化简后不含有x的二次项,只有A符合一元二次方程定义.故选A.)2.A(解析:把x=-1代入方程可得a-b+c=0,a+c=b, ab+cb= a+cb=1,故选A.)3.5(解析:根据一元二次方程的定义可得m-3=2,解得m=5,故填5.)4.-1(解析:由题意得m2-1=0,m-10,所以m=-1,故填-1.)5.1(解析:把x=1代入方程可得1+a+b=0,a+b=-1,a2+b2+2ab=(a+b)2=(-1)2=1,故填1.)6.(30-2x)(20-x)=678(解析:设道路的宽为x m,将6块草地平移为一个长方形,长为(30-2x) m,宽为(20-x) m.根据长方形面积公式即可列方程(30-2x)(20-x)=678.)7.解:(1)2x2-2x-3=0,二次项系数为2,一次项系数为-2,常数项为-3.(2)3x2+10x+5=0,二次项系数为3,一次项系数为10,常数项为5.8.k1且k2(解析:一元二次方程满足二次项系数不为0,该题易忽略考虑二次根式的被开方数为非负值.)9.二(解析:把x=2代入方程可得a=3,所以一次函数为y=3x-1,函数图像过第一、三、四象限,故填二.)10.解:m是方程x2-x-1=0的一个根,m2-m=1,m(m+1)2-m2(m+3)+4=-m2+m+4=-(m2-m)+4=-1+4=3.11.解:(1)由题意得m2-1=0,m+10,即m=1时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论