《一元二次方程》回顾与思考.doc_第1页
《一元二次方程》回顾与思考.doc_第2页
《一元二次方程》回顾与思考.doc_第3页
《一元二次方程》回顾与思考.doc_第4页
《一元二次方程》回顾与思考.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一元二次方程回顾与思考教学设计设 计 者:崔楼初中 鲁智勇教学任务分析本节课是一元二次方程的复习课,对于本章的基础知识,学生已大致掌握.本节课以梳理、巩固基础知识为起点,重点解决在学生中存在的易错点与混淆点;实际应用是方程建模思想的具体体现,学生往往感到有一定的难度,本节课以此为重点,从简单的实际问题入手,逐步加深对建模思想的理解.本章的主要内容有三部分第一部分是一元二次方程的概念:学习一元二次方程的一般形式、成立的条件,一元二次方程的根(或解),检验一个数值是否是一元二次方程的解的方法;第二部分是一元二次方程的解法:理解一元二次方程的解法的数学思想是降次,由降次的不同方法得出一元二次方程的不同解法,掌握一元二次方程的解法(配方法、公式法、因式分解法);第三部分是一元二次方程的应用:利用一元二次方程来解答实际应用问题、数学综合问题等。一元二次方程是初中阶段最重要的方程,它是解答数学问题的重要工具和方法,并且对学习函数,尤其是二次函数的综合问题起着决定性的作用,它在中考试题中占有一定的比例. 学生知识状况分析学生的知识技能基础:学生在七年级和八年级已经学习了一元一次方程、二元一次方程以及一次函数的相关知识及应用,在本章中,又学习了一元二次方程的相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力;学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力. 教学目标本节课是一元二次方程的复习课,对于本章的基础知识,学生已大致掌握.本节课以梳理、巩固基础知识为起点,重点解决在学生中存在的易错点与混淆点;实际应用是方程建模思想的具体体现,学生往往感到有一定的难度,本节课以此为重点,从简单的实际问题入手,逐步加深对建模思想的理解.为此,设置本节课的教学目标如下:1、知识与技能:经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;能够利用一元二次方程解决有关实际问题,帮助学生认识到运用方程解决实际问题的关键是确定题目中蕴含的等量关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想;2、过程与方法:通过让学生经历将多种实际问题抽象成数学问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;通过小组合作学习,经历一题多解等过程,发展学生多角度思考问题的方法.情感与态度、价值观:通过对方程的认识、一题多解的思维展示,发展学生勇于展示自己的品质;在解决富有挑战性的问题的过程中,培养学生敢于直面困难、勇于挑战的良好品质,鼓励学生大胆尝试,体会成功的喜悦,激发学生学习数学的兴趣.教学重点能够利用一元二次方程解决有关实际问题,帮助学生认识到运用方程解决实际问题的关键是确定题目中蕴含的等量关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;教学难点 熟练求一元二次方程的解,并会将实际问题抽象为单纯的数学问题(列一元二次方程)来解决会用一元二次方程的根与系数的关系求未知字母的系数,掌握一元二次方程根的判别式的应用.学法指导1. 经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界数量关系的一个有效的数学模型,本章遵循了“问题情境建立模型应用”的模式.2在观察、归纳、类比、计算与交流活动中,理解并掌握一元二次方程的基本解法直接开平方法、因式分解法、配方法和公式法,并形成利用语言文字规范化地表达方程思想和方程知识的过程.3通过对一元二次方程解法的探索与思考,进一步体会“化归”与“转化”的数学,思想的重要地位,解一元二次方程实际上是转化为解一元一次方程,达到降次的目的,进一步认识“方程是反映现实世界数量关系的一个有效的数学模型”.4经历在具体问题情境中估计一元二次方程的解的过程,注意精确解、近似解的含义,并根据具体问题检验解的合理性.5学好本章的关键是熟练掌握一元二次方程的解法和利用一元二次方程解决实际问题的方法,在学习过程中随时类比一元一次方程等相关知识,注意一元二次方程根与系数的关系,并在探索过程中体会“化归”与“转化”等数学思想在解决问题中的作用.教具准备多媒体演示、计算器教学流程:知识网络结构图让学生重新回顾本章内容,整理出本章的知识结构网络,理清各板块内容间的联系.此活动内容在上课前一天布置,让每一位学生都提前做好准备.上课时,选取有代表性的知识结构网络进行全班展示,其他同学对照自己的总结查缺补漏.同时,教师展示一下本章的框架,指出本节课的重点是:利用一元二次方程解决实际问题.定义:等号两边都是整式,只含有一个未知数(一元),未知数的最高次数是2(二次)的方程为一元二次方程直接开平方法因式分解法配方法公式法解法(降次)一元二次方程应用一元二次方程解决实际问题专题总结及应用一、知识性专题专题1 一元二次方程的定义【专题解读】涉及一元二次方程定义的问题,应注意强调二次项系数不为0,不要忽略某些题目中的隐含条件.例1 已知(m1)x|m|+1+3x20是关于x的一元二次方程,求m的值.分析 依题意可知m10与|m|+12必须同时成立,因此求出满足上述两个条件的m的值即可.解:依题意得|m|+12,即|m|1,解得m1,又m10,m1,故m1.【解题策略】解决此类问题的关键是牢记并理解一元二次方程的定义,特别是二次项系数应为非零数这一隐含条件要注意.专题2 一元二次方程的解法【专题解读】解一元二次方程时,主要考虑降次,其解法有直接开平方法、因式分解法、配方法及公式法,在具体的解题过程中,应结合具体的方程的特点选择简单、恰当的方法.例2 用配方法解一元二次方程2x2+13 x.分析 本题考查配方法解方程的步骤.解:移项,得2x23 x1,二次项系数化为1,得配方,得由此可得【解题策略】在二次系数为1的前提下,方程两边都加上一次项系数一半的平方.例3 一元二次方程3x2x0的解是( )A.x0 B.x10,x23 C. D. 分析 根据本题特点应采用因式分解法,将原方程化为x(3x1)0,易求出x0或3x10,问题得解.故选C.【解题策略】方程易转化为两个一次式乘积为0的形式,可采用因式分解法来解方程.例4 解方程x22x20.分析 结合方程特点,本题可采用公式法或配方法求解.解法1:a1,b2,c2,b24ac(2)241(2)12,x解法2:移项,得x22x2,配方得x22x+13,即(x1)23,x1,【解题策略】 一元二次方程的解法中,配方法及公式法是“万能”的方法.专题3 与方程的根有关的问题【专题解读】 这部分内容主要考查已知方程的一根求字母的值,或者是根与系数及判别式相联系的问题.例5 解下列方程,将所得到的解填入下面表格中:方程x1x2x1+x2x1x2x26x0x25x+40x2+3x100(1)通过填表,你发现这些方程的两个解的和与积与方程的系数有什么关系了吗?(2)一般地,对于关于x的方程x2+px+q0(p,q为常数,且p24q0)来说,是否也具备(1)中你所发现的规律?如果具备,请你写出规律,并说明理由;如果不具备,请举出反例.分析 这是一道探究规律的试题,解决此题应按照题中所给顺序逐项认真完成,仔细观察,能发现一元二次方程的根与系数的关系.解:填表如下:方程x1x2x1+x2x1x2x26x00660x25x+401454x2+3x10052310(1)由上表可以发现:上述方程的两根之和等于方程的一次项系数的相反数,两根之积等于常数项.(2)对方程x2+px+q0(p,q为常数,且p24q0)来说也具备同样的规律.设方程x2+px+q0的两根为x1,x2,则x1+x2p,x1x2q,理由如下:p24q0,方程x2+px+q0有两个实数根,x1+x2x1x2即x1+x2p,x1x2q.例6 若a是关于x的方程x2+bx+a0的根,且a0,则由此可得求得下列代数式的值恒为常数的是( )A.ab B. C.a+b D.ab分析 此题应由根的意义入手,将a代入方程等得到关于a,b的一个方程,再通过因式分解进行求解.把xa代入方程x2+bx+a0,得a2+ab+a0,a(a+b+1)0,又a0,a+b+10,即a+b1.故选C.【解题策略】本题将方程解的意义、方程的解法融为一体,体现了消元、降次的转化思想,具有一定的探究性,而且此题在设计思路上跳出了固定套路,是一道具有创新意识的题.专题4 一元二次方程的应用【专题解读】利用一元二次方程解决实际问题时,应根据具体问题找到等量关系,进而列出方程,另外,对方程的解要注意合理进行取舍.例7 乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是校舍,2005年市政府对农牧区校舍改造的投入资金是5786万元,2007年校舍改造的投入资金是8050.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x,则根据题意列方程得 .分析 本题考查一元二次方程在增长率问题中的应用.因两年投入农牧区校舍改造资金的年平均增长率为x,则2006年投入资金是5786(1+x)万元,2007年的投入资金是5786(1+x)2万元,故所求方程为5786(1+x)28058.9.【解题策略】有关增长率问题的常用公式为a(1+x)nb(n为正整数).二、规律方法专题专题5 一元二次方程的解法技巧【专题解读】除了常见的几种一元二次方程的解法外,对于特殊类型的方程,可采用特殊的方法.1.换元法例8 如果(2m+2n+1)(2m+2n1)63,那么m+n的值是 .分析 把m+n看做一个整体求解.设m+nx,则原方程化为(2x+1)(2x1)63,整理,得4x264,解得x4,m+n4.故填4.例9 解方程(3x+2)28(3x+2)+150.分析 此题可以把原方程展开为一般形式,运用公式法、因式分解法或配方法求解,但都比较麻烦,观察题目的结构可知把3x+2看做一个整体,设为t,则原方程就可化成关于未知数t的一元二次方程.解:设3x+2t,原方程化为t28t+150,t13,t25.当t3时,3x+23,x;当t5时,3x+25,x1.原方程的根为x1,x21.【解题策略】 本题也可直接分解为(3x+2)3 (3x+2)50,即(3x1)(3x3)0,用因式分解法解得x1,x21.三、思想方法专题专题6 建模思想【专题解读】 建模思想是指根据实际问题中数量之间的关系建立方程模型表达这个等量关系,通过解方程来解决实际问题.例15 经过两年的连续治理,某城市的大气环境有了明显改善,其每年每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是 .分析 根据题意,设所求百分率为x,则有50(1x)2=40.5,解得x1=1.9,x2=0.1,而1.91,不合题意,舍去,故x=0.1.故平均每年下降的百分率是10%.故填10%.【解题策略】利用一元二次方程解实际问题时,方程的解一定要符合实际意义.在建立方程模型解决实际问题时,应找准对应的数量关系.课堂小结内容:师生共同总结本节课的收获,内容主要设计以下几个方面:(1)整节课的感悟:如在解决概念性题目时,要注意领会概念的实质含义;在计算时要做到细心;对于学过的内容,自己要及时进行梳理等等(2)解决问题时所用到的方法;(3)对于某个知识点的困惑;(4)通过本节课的学习,自己的最大收获.布置作业1、本节课中涉及的所有题目在课下进行分类整理,留作资料;2、针对自己对本章的理解,每名同学命制一份试卷,要求时间在60分钟左右,重点突出,难度适宜,并配有答案(此作业不要求第二天必须上交,给学生一定的收集资料时间).教学反思1、作为一章的复习课,本节课设置的内容较为全面细致,重点突出,课堂容量相对来说较大,学生的分组讨论从时间上来看较为紧张,因而,应该更好地规划对某些题目的处理.2、通过课前知识网络的整理、课堂展示讲解的过程,为学生提供展示自己的机会,更利于教师在此过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论