




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
力学综合题 例 如图示 竖直放置的弹簧下端固定 上端连接一个砝码盘b 盘中放一个物体a a b的质量分别是m 10 5kg m 1 5kg k 800n m 对a施加一个竖直向上的拉力 使它做匀加速直线运动 经过0 2秒a与b脱离 刚脱离时刻的速度为v 1 2m s 取g 10m s2 求a在运动过程中拉力的最大值与最小值 解 对整体kx1 m m g f kx m m g m m a 脱离时 a b间无相互作用力 对bkx2 mg ma x1 x2 1 2at2a v t 6m s2 fmax mg ma 168n fmin m m a 72n 例 如图示 在光滑的水平面上 质量为m的小球b连接着轻质弹簧 处于静止状态 质量为2m的小球a以初速度v0向右运动 接着逐渐压缩弹簧并使b运动 过了一段时间a与弹簧分离 1 当弹簧被压缩到最短时 弹簧的弹性势能ep多大 2 若开始时在b球的右侧某位置固定一块挡板 在a球与弹簧未分离前使b球与挡板发生碰撞 并在碰后立即将挡板撤走 设b球与挡板的碰撞时间极短 碰后b球的速度大小不变但方向相反 欲使此后弹簧被压缩到最短时 弹性势能达到第 1 问中ep的2 5倍 必须使b球在速度多大时与挡板发生碰撞 解 1 当弹簧被压缩到最短时 ab两球的速度相等设为v 由动量守恒定律 2mv0 3mv 由机械能守恒定律 ep 1 2 2mv02 1 2 3mv2 mv2 3 2 画出碰撞前后的几个过程图 由甲乙图2mv0 2mv1 mv2 由丙丁图2mv1 mv2 3mv 由机械能守恒定律 碰撞过程不做功 1 2 2mv02 1 2 3mv2 2 5ep 解得v1 0 75v0v2 0 5v0v v0 3 例7 如图示 质量为2m的木板 静止放在光滑的水平面上 木板左端固定着一根轻弹簧 质量为m的小木块 可视为质点 它从木板右端以未知速度v0开始沿木板向左滑行 最终回到木板右端刚好未从木板上滑出 若在小木块压缩弹簧的过程中 弹簧具有的最大弹性势能为ep 小木块与木板间滑动摩擦系数大小保持不变 求 木块的未知速度v0以木块与木板为系统 上述过程中系统损失的机械能 解 弹簧压缩最短时 两者具有相同的速度v1 由动量守恒定律得 v1 1 3v0 木块返回到右端时 两者具有相同的速度v2 同理v2 1 3v0 由能量守恒定律1 2mv02 1 2 3mv12 ep fl 1 2 3mv12 ep 1 2 3mv22 fl v1 v2 ep fl 1 2mv02 1 2 3mv12 2ep 即1 3mv02 2ep e 2ep 在原子核物理中 研究核子与核关联的最有效途径是 双电荷交换反应 这类反应的前半部分过程和下述力学模型类似 两个小球a和b用轻质弹簧相连 在光滑的水平直轨道上处于静止状态 在它们左边有一垂直于轨道的固定挡板p 右边有一小球c沿轨道以速度v0射向b球 如图所示 c与b发生碰撞并立即结成一个整体d 在它们继续向左运动的过程中 当弹簧长度变到最短时 长度突然被锁定 不再改变 然后 a球与挡板p发生碰撞 碰后a d都静止不动 a与p接触而不粘连 过一段时间 突然解除锁定 锁定及解除定均无机械能损失 已知a b c三球的质量均为m 1 求弹簧长度刚被锁定后a球的速度 2 求在a球离开挡板p之后的运动过程中 弹簧的最大弹性势能 2000年高考22 1 设c球与b球粘结成d时 d的速度为v1 由动量守恒 有 mv0 m m v1 当弹簧压至最短时 d与a的速度相等 设此速度为v2 由动量守恒 有 2mv1 3mv2 由 两式得a的速度v2 1 3v0 2 设弹簧长度被锁定后 贮存在弹簧中的势能为ep 由能量守恒 有 撞击p后 a与d的动能都为零 解除锁定后 当弹簧刚恢复到自然长度时 势能全部转变成d的动能 设d的速度为v3 则有 当弹簧伸长 a球离开挡板p 并获得速度 当a d的速度相等时 弹簧伸至最长 设此时的速度为v4 由动量守恒 有 2mv3 3mv4 当弹簧伸到最长时 其势能最大 设此势能为 由能量守恒 有 解以上各式得 如图所示 a b是静止在水平地面上完全相同的两块长木板 a的左端和b的右端相接触 两板的质量皆为m 2 0kg 长度皆为l 1 0m c是一质量为m 1 0kg的木块 现给它一初速度v0 2 0m s 使它从b板的左端开始向右动 已知地面是光滑的 而c与a b之间的动摩擦因数皆为 0 10 求最后a b c各以多大的速度做匀速运动 取重力加速度g 10m s2 01年春季北京 解 先假设小物块c在木板b上移动距离x后 停在b上 这时a b c三者的速度相等 设为v 由动量守恒得 在此过程中 木板b的位移为s 小木块c的位移为s x 由功能关系得 解 两式得 代入数值得 x比b板的长度l大 这说明小物块c不会停在b板上 而要滑到a板上 设c刚滑到a板上的速度为v1 此时a b板的速度为v1 如图示 则由动量守恒得 由功能关系得 以题给数据代入解得 由于v1必是正数 故合理的解是 当滑到a之后 b即以v1 0 155m s做匀速运动 而c是以v1 1 38m s的初速在a上向右运动 设在a上移动了y距离后停止在a上 此时c和a的速度为v2 如图示 对ac 由动量守恒得 解得v2 0 563m s 由功能关系得 解得y 0 50m y比a板的长度小 故小物块c确实是停在a板上 最后a b c的速度分别为 一只老鼠从洞口爬出后沿一直线运动 其速度大小与其离开洞口的距离成反比 当其到达距洞口为d1的a点时速度为v1 若b点离洞口的距离为d2 d2 d1 求老鼠由a运动到b所需的时间 解 v1 k d1k d1v11 v1 d1 k v2 k d2 d1v1 d21 v2 d2 d1v1 作出v d图线 见图线 将v d图线转化为1 v d图线 取一小段位移d 可看作匀速运动 t d v d 1 v即为小窄条的面积 同理可得梯形总面积即为所求时间 t 1 2 1 v2 1 v1 d2 d1 d2 d1 2 2d1v1 经过用天文望远镜长期观测 人们在宇宙中发现了许多双星系统 所谓双星系统是由两个星体构成的天体系统 其中每个星体的线度都远远小于两个星体之间的距离 根据对双星系统的光度学测量确定 这两个星体中的每一个星体都在绕两者连线中的某一点作圆周运动 星体到该点的距离与星体的质量成反比 一般双星系统与其它星体距离都很远 除去双星系统中两个星体之间相互作用的万有引力外 双星系统所受其它天体的作用都可以忽略不计 这样的系统称为孤立系统 现根据对某一双星系统的光度学测量确定 该双星系统中每个星体的质量都是m 两者的距离是l 双星系统 下页 1 试根据动力学理论计算该双星系统的运动周期t0 2 若实际观测到该双星系统的周期为t 且 为了解释t与t0之间的差异 目前有一种流行的理论认为 在宇宙中可能存在一种用望远镜观测不到的暗物质 作为一种简化模型 我们假定认为在这两个星体连线为直径的球体内均匀分布着这种暗物质 若不考虑其它暗物质的影响 试根据这一模型和上述观测结果确定该星系间这种暗物质的密度 上页 下页 解 设暗物质的质量为m 重心在o点 题目 上页 一传送带装置示意如图 其中传送带经过ab区域时是水平的 经过bc区域时变为圆弧形 圆弧由光滑模板形成 未画出 经过cd区域时是倾斜的 ab和cd都与bc相切 现将大量的质量均为m的小货箱一个一个在a处放到传送带上 放置时初速为零 经传送带运送到d处 d和a的高度差为h 稳定工作时传送带速度不变 cd段上各箱等距排列 相邻两箱的距离为l 每个箱子在a处投放后 在到达b之前已经相对于传送带静止 且以后也不再滑动 忽略经bc段时的微小滑动 已知在一段相当长的时间t内 共运送小货箱的数目为n 这装置由电动机带动 传送带与轮子间无相对滑动 不计轮轴处的摩擦 求电动机的平均输出功率p 2003全国理综34 解析 以地面为参考系 下同 设传送带的运动速度为v0 在水平段运输的过程中 小货箱先在滑动摩擦力作用下做匀加速运动 设这段路程为s 所用时间为t 加速度为a 则对小箱有 s 1 2 at2v0 at 在这段时间内 传送带运动的路程为 s0 v0t 由以上可得 s0 2s 用f表示小箱与传送带之间的滑动摩擦力 则传送带对小箱做功为 a fs 1 2 mv02 传送带克服小箱对它的摩擦力做功 a0 fs0 2 1 2 mv02 两者之差就是摩擦力做功发出的热量 q 1 2 mv02 也可直接根据摩擦生热q f s f s0 s 计算 题目 可见 在小箱加速运动过程中 小箱获得的动能与发热量相等 q 1 2 mv02 t时间内 电动机输出的功为 此功用于增加小箱的动能 势能以及克服摩擦力发热 即 w n 1 2 mv02 mgh q n mv02 mgh 已知相邻两小箱的距离为l 所以 v0t nlv0 nl t 联立 得 题目 04年江苏高考15 1 重物向下先做加速运动 后做减速运动 当重物速度为零时 下降的距离最大 设下降的最大距离为h 由机械能守恒定律得 解得 另解h 0舍去 2 系统处于平衡状态时 两小环的可能位置为 a 两小环同时位于大圆环的底端 b 两小环同时位于大圆环的顶端 c 两小环一个位于大圆环的顶端 另一个位于大圆环的底端 d 见下页 题目 下页 d 除上述三种情况外 根据对称性可知 系统如能平衡 则两小圆环的位置一定关于大圆环竖直对称轴对称 设平衡时 两小圆环在大圆环竖直对称轴两侧 角的位置上 如图所示 对于重物 受绳子拉力与重力作用 有t mg 对于小圆环 受到三个力的作用 水平绳的拉力t 竖直绳子的拉力t 大圆环的支持力n 两绳子的拉力沿大圆环切向的分力大小相等 方向相反 得 而 90 所以 45 题目 上页 04年江苏高考18 16分 一个质量为m的雪橇静止在水平雪地上 一条质量为m的爱斯基摩狗站在该雪橇上 狗向雪橇的正后方跳下 随后又追赶并向前跳上雪橇 其后狗又反复地跳下 追赶并跳上雪橇 狗与雪橇始终沿一条直线运动 若狗跳离雪橇时雪橇的速度为v 则此时狗相对于地面的速度为v u 其中u为狗相对于雪橇的速度 v u为代数和 若以雪橇运动的方向为正方向 则v为正值 u为负值 设狗总以速度v追赶和跳上雪橇 雪橇与雪地间的摩擦忽略不计 已知v的大小为5m s u的大小为4m s m 30kg m 10kg 1 求狗第一次跳上雪橇后两者的共同速度的大小 2 求雪橇最终速度的大小和狗最多能跳上雪橇的次数 供使用但不一定用到的对数值 lg2 o 301 lg3 0 477 解 1 设雪橇运动的方向为正方向 狗第1次跳下雪橇后雪橇的速度为v1 根据动量守恒定律 有 狗第1次跳上雪橇时 雪橇与狗的共同速度满足 可解得 将 代入 得 题目 下页 2 解 设雪橇运动的方向为正方向 狗第i次跳下雪橇后 雪橇的速度为vi 狗的速度为vi u 狗第i次跳上雪橇后 雪橇和狗的共同速度为vi 由动量守恒定律可得 第一次跳下雪橇 mv1 m v1 u 0 第一次跳上雪橇 mv1 mv m m v1 第二次跳下雪橇 m m v1 mv2 m v2 u 第二次跳上雪橇 mv2 mv m m v2 题目 下页 第三次跳下雪橇 m m v2 mv3 m v3 u 第三次跳上雪橇 第四次跳下雪橇 m m v3 mv4 m v4 u 此时雪橇的速度已大于狗追赶的速度 狗将不可能追上雪橇 因此 狗最多能跳上雪橇3次 雪橇最终的速度大小为5 625m s 题目 上页 16分 图中 轻弹簧的一端固定 另一端与滑块b相连 b静止在水平导轨上 弹簧处在原长状态 另一质量与b相同的滑块a 从导轨上的p点以某一初速度向b滑行 当a滑过距离l1时 与b相碰 碰撞时间极短 碰后a b紧贴在一起运动 但互不粘连 已知最后a恰好返回出发点p并停止 滑块a和b与导轨的滑动摩擦因数都为 运动过程中弹簧最大形变量为l2 重力加速度为g 求a从p出发时的初速度v0 04年广西17 解 设a b质量均为m a刚接触b时速度为v1 碰前 由功能关系 碰撞过程中动量守恒 令碰后a b共同运动的速度为v2 mv1 2mv2 2 碰后a b先一起向左运动 接着a b一起被弹回 在弹簧恢复到原长时 设a b的共同速度为v3 在这过程中 弹簧势能始末两态都为零 由功能关系 有 后a b开始分离 a单独向右滑到p点停下 由功能关系有 由以上各式 解得 19分 如图 长木板ab的b端固定一档板 木板连同档板的质量为m 4 0kg a b间距离s 2 0m 木板位于光滑水平面上 在木板a端有一小物块 其质量m 1 0kg 小物块与木板间的动摩擦因数 0 10 它们都处于静止状态 现令小物块以初速v0 4 0m s沿木板向前滑动 直到和档板相撞 碰撞后 小物块恰好回到a端而不脱离木板 求碰撞过程中损失的机械能 04年青海甘肃25 解 设木块和物块最后共同的速度为v 由动量守恒定律 mv0 m m v 设全过程损失的机械能为 e 木块在木板上相对滑动过程损失的机械能为 w f s 2 mgs 注意 s为相对滑动过程的总路程 碰撞过程中损失的机械能为 如图示 在一光滑的水平面上有两块相同的木板b和c 重物a 视为质点 位于b的右端 a b c的质量相等 现a和b以同一速度滑向静止的c b与c发生正碰 碰后b和c粘在一起运动 a在c上滑行 a与c有摩擦力 已知a滑到c的右端而未掉下 试问 从b c发生正碰到a刚移到c右端期间 c所走过的距离是c板长度的多少倍 04年全国理综 解 设a b开始的同一速度为v0 a b c的质量为m c板长度为l b与c发生正碰时 a不参与 速度为v1 对b与c 由动量守恒定律 mv0 2mv1 1 v1 v0 2 碰后b和c粘在一起运动 a在c上滑行 由于摩擦力的作用 a做匀减速运动 b c做匀加速运动 最后达到共同速度v2 对三个物体整体 由动量守恒定律 2mv0 3mv2 2 v2 2v0 3 对a 由动能定理 f s l 1 2mv22 1 2mv02 5 18 mv02 3 对bc整体 由动能定理 fs 1 2 2mv22 1 2 2mv12 7 36 mv02 4 3 4 得 s l s 10 7 l s 3 7 04年天津16 公路上匀速行驶的货车受一扰动 车上货物随车厢底板上下振动但不脱离底板 一段时间内货物在坚直方向的振动可视为简谐运动 周期为t 取竖直向上为正方向 以某时刻作为计时起点 即 其振动图象如图所示 则 a t t 4时 货物对车厢底板的压力最大b t t 2时 货物对车厢底板的压力最小c t 3t 4时 货物对车厢底板的压力最大d t 3t 4时 货物对车厢底板的压力最小 点拨 a的大小与x成正比 方向与x相反 当x为负最大时 加速度a为正最大 货物受到向上的合力最大 车厢底板对货物的支持力最大 货物对车厢底板的压力最大 c 04年江苏高考16 16 15分 如图所示 声源s和观察者a都沿x轴正方向运动 相对于地面的速率分别为vs和va 空气中声音传播的速率为vp 设vs vp va vp 空气相对于地面没有流动 1 若声源相继发出两个声信号 时间间隔为 t 请根据发出的这两个声信号从声源传播到观察者的过程 确定观察者接收到这两个声信号的时间间隔 t 2 请利用 1 的结果 推导此情形下观察者接收到的声波频率与声源发出的声波频率间的关系式 解 1 设t1 t2为声源s发出两个信号的时刻 为观察者接收到两个信号的时刻 则第一个信号经过 t1 时间被观察者a接收到 第二个信号经过 t2 时间被观察者a接收到 且t2 t1 t 设声源发出第一个信号时 s a两点间的距离为l 两个声信号从声源传播到观察者的过程中 它们运动的距离关系如图所示 可得 由以上各式 得 题目 下页 2 设声源发出声波的振动周期为t 这样 由以上结论 观察者接收到的声波振动的周期t为 由此可得 观察者接收到的声波频率与声源发出声波频率间的关系为 题目 上页 例 如图示 小木块质量m 1kg 长l 1m 长木板质量m 10kg 木板与地面以及木块间动摩擦因数均为 0 5 当木板从静止开始受水平向右的恒力f 90n作用时 木块以初速v0 4m s向左滑上木板的右侧 则为使木块不滑离木板 木板的长度l至少要多长 解 m受摩擦力向左匀减速运动 a1 g 5m s2 m受到合力作用向右匀加速运动 a2 f f f地 m 90 5 55 10 3m s2 设经过ts 木块向左减速到0再向右加速到v时 跟木板相对静止 木块刚好不滑离木板 如图示 v1 v0 a1t v2 a2t v1 v2 v解得t 2s s1 v0t 1 2a1t2 8 10 2m s2 1 2a2t2 6m注意正负号的意义 l s2 s1 4m 如图所示 一质量为500kg的木箱放在质量为2000kg的平板车的后部 木箱到驾驶室的距离l 1 6m 已知木箱与车底板间的动摩擦因数 0 848 平板车运动过程中所受的行驶阻力是车和箱总重的0 20倍 平板车以v0 22m s的速度匀速行驶 某时刻驾驶员遇情况突然刹车 车做匀减速运动 为不让木箱撞击驾驶室 求 1 从刹车开始到平板车完全停止至少要经多长时间 2 刹车时平板车所受的刹车阻力不能超过多大 解 1 设为使木箱恰好不撞击驾驶室的最小刹车时间为t 刹车过程中车和木箱的加速度分别为a车和a箱 运动的位移分别为s车和s箱 刹车后 对车有 v02 2a车s车 v0 a车t 木箱的加速度a箱 g 刹车后木箱运动至停止 有 v02 2a箱s箱 木箱刚好不撞击驾驶室时 有 s箱 s车 l 解得 a车 5m s2 t 4 4s 2 设刹车阻力为f 则刹车过程 对车受力如图示 f 0 20 m箱 m车 g m箱g m车a车 解得f 7420n 例 人和雪橇的总质量为75kg 沿倾角 37 且足够长的斜坡向下运动 已知雪橇所受的空气阻力与速度成正比 比例系数k未知 从某时刻开始计时 测得雪橇运动的v t图象如图中的曲线ad所示 图中ab是曲线在a点的切线 切线上一点b的坐标为 4 15 cd是曲线ad的渐近线 g取10m s2 试回答和求解 雪橇在下滑过程中 开始做什么运动 最后做什么运动 当雪橇的速度为5m s时 雪橇的加速度为多大 雪橇与斜坡间的动摩擦因数 多大 解 由图线可知 雪橇开始以5m s的初速度作加速度逐渐减小的变加速运动 最后以10m s作匀速运动 t 0 v0 5m s时ab的斜率等于加速度的大小 a v t 10 4 2 5m s2 t 0v0 5m sf0 kv0由牛顿运动定律 mgsin mgcos kv0 ma t 4svt 10m sft kvt mgsin mgcos kvt 0 解 得k 37 5ns m 0 125 例 如图甲示 质量分别为m1 1kg和m2 2kg的ab两物块并排放在光滑水平面上 若对a b分别施加大小随时间变化的水平外力f1和f2 若f1 9 2t nf2 3 2t n 则 经多少时间t0两物块开始分离 在同一坐标乙中画出两物块的加速度a1和a2随时间变化的图象 速度的定义为v s t v t 图线下的 面积 在数值上等于位移 s 加速度的定义为a v t 则 a t 图线下的 面积 在数值上应等于什么 试计算a b两物块分离后2s的速度各多大 解 对整体 f1 f2 m1 m2 a a 12 3 4m s2 设两物块间的作用力为t 对a f1 t m1a t f1 m1a 5 2t当t 0时 两物块分离 t0 2 5s 分离前两物块的加速度相同为4m s2 分离后 对aa1 f1 m1 9 2t m s2 对ba2 f2 m2 1 5 t m s2 t 2 5s 画出两物块的a t图线如图示 见前页 a t 图线下的 面积 在数值上等于速度的变化 v 由 算出图线下的 面积 即为两物块的速度 va 4 5 2 5 4 2 14m s vb 4 2 5 4 6 2 2 20m s 例11 质量为m 3kg的小车放在光滑的水平面上 物块a和b的质量为ma mb 1kg 放在小车的光滑水平底板上 物块a和小车右侧壁用一根轻弹簧连接起来 不会分离 物块a和b并排靠在一起 现用力压b 并保持小车静止 使弹簧处于压缩状态 在此过程中外力做功135j 如右图所示 撤去外力 当b和a分开后 在a达到小车底板的最左端位置之前 b已从小车左端抛出 求 1 b与a分离时a对b做了多少功 2 整个过程中 弹簧从压缩状态开始 各次恢复原长时 物块a和小车的速度 解 1 ab将分离时弹簧恢复原长 ab的速度为v 小车速度为v 对a b m系统 由动量守恒定律和机械能守恒定律得 ma mb v mv 01 2 ma mb v2 1 2mv2 e0 即2v 3v 0v2 1 5v2 135 解得v 9m s v 6m s wa对b 1 2mbv2 40 5j 2 b离开小车后 对小车和a及弹簧系统由动量守恒定律和机械能守恒定律得 向右为正 mav1 mv1 91 2mav12 1 2mv12 e0 40 5 即v1 3v1 9v12 3v12 189 代入消元得2v12 9v1 18 0 解得v1 13 5m s v1 1 5m s或v1 9m s v1 6m s 答 b与a分离时a对b做了多少功40 5j 2 弹簧将伸长时小车和a的速度分别为9m s 6m s 将压缩时为13 5m s 1 5m s 13分 一个圆柱形的竖直的井里存有一定量的水 井的侧面和底部是密闭和 在井中固定地插着一根两端开口的薄壁圆管 管和井共轴 管下端未触及井底 在圆管内有一不漏气的活塞 它可沿圆管上下滑动 开始时 管内外水面相齐 且活塞恰好接触水面 如图所示 现有卷场机通过绳子对活塞施加一个向上的力f 使活塞缓慢向上移动 已知管筒半径r 0 100m 井的半径r 2r 水的密度 1 00 103kg m3 大气压p0 1 00 105pa 求活塞上升h 9 00m的过程中拉力f所做的功 井和管在水面以上及水面以下的部分都足够长 不计活塞质量 不计摩擦 重力加速度g 10m s2 01年全国22 下页 解 从开始提升到活塞升至内外水面高度差为h0 p0 g 10m的过程中 活塞始终与管内液体接触 再提升活塞时 活塞和水面之间将出现真空 另行讨论 设 活塞上升距离为h1 管外液面下降距离为h2 h0 h1 h2 因液体体积不变 有 题给h 9m h1 由此可知确实有活塞下面是真空的一段过程 题目 上页 下页 活塞移动距离从0到h1的过程中 对于水和活塞这个整体 其机械能的增量应等于除重力外其他力所做的功 因为始终无动能 所以机械能的增量也就等于重力势能增量 即 其他力有管内 外的大气压力和拉力f 因为液体不可压缩 所以管内 外大气压力做的总功 故外力做功就只是拉力f做的功 由功能关系知w1 e 活塞移动距离从h1到h的过程中 液面不变 f是恒力f r2p0做功为 所求拉力f做的总功为 题目 上页 13分 如图1 在光滑水平长直轨道
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抗菌药临床应用思路与制定科学的抗菌方案讲课文档
- 浙江省台州市三门县2023-2024学年第一学期四年级科学期中检测卷(含答案)
- 电瓶车维修知识培训内容课件
- 北楼中学分班考试试卷及答案
- 2-6-Deoxyfructosazine-13C4-生命科学试剂-MCE
- 电梯安全管理员证考试题库及答案
- 家政考试题及答案
- 电热电器知识培训总结
- 高层消防栓安全知识培训
- 2025年云教育项目提案报告模板
- 中华护理学术会议收获
- 跨境电商风险管理-洞察阐释
- 教师数字提升培训课件
- 中西医结合医院“十五五”发展规划
- 消化性溃疡疾病的护理
- 2025-2030年中国少儿期刊出版行业市场深度调研及前景趋势与投资研究报告
- 2025年河南开封水务投资集团有限公司招聘笔试参考题库含答案解析
- JG/T 220-2007铜铝复合柱翼型散热器
- T/CCAA 39-2022碳管理体系要求
- 江苏省扬州市广陵区梅岭中学2025届七下数学期末综合测试模拟试题含解析
- 2025年浙江省公务员录用考试《行测》真题及答案解析(B类)
评论
0/150
提交评论