




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的单调性教学设计 教材分析 从函数角度来讲 函数的单调性是学生学习函数概念后学习的第一个函数性质 也是第一个用数学符号语言来刻画的概念 函数的单调性与函数的奇偶性 周期性一样 都是研究自变量变化时 函数值的变化规律 学生对于这些概念的认识 都经历了直观感受 文字描述和严格定义三个阶段 即都从图象观察 以函数解析式为依据 经历用符号语言刻画图形语言 用定量分析解释定性结果的过程 函数单调性的学习为进一步学习函数的其它性质提供了方法依据 本章研究的单调性是从观察函数图象的特性 然后给出一般的定义 作为代数方面证明的开始和基础这也是学生接受的难点所在 从学科角度来讲 函数的单调性是学习不等式 极限 导数等其它数学知识的重要基础 是解决数学问题的常用工具 也是培养学生逻辑推理能力和渗透数形结合思想的重要素材 教学重点和难点 理解函数的单调性概念掌握判断一些简单函数的单调性的方法 主要是能根据函数的图像来判断函数的单调性本节课的教学重点是函数单调性的概念 判断 证明函数的单调性难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性 学情分析 首先 要求用准确的数学符号语言去刻画图象的上升与下降 把对单调性直观感性的认识上升到理性的高度 这种由形到数的翻译 从直观到抽象的转变对高一的学生来说比较困难其次 单调性的证明是学生在函数学习中首次接触到的代数论证内容 而学生在代数方面的推理论证能力是比较薄弱的 教法建议 本节课是函数单调性的起始课 根据教学内容 教学目标和学生的认知水平 主要采取教师启发讲授 学生探究学习的教学方法 教学过程中 根据教材提供的线索 安排适当的教学情境 让学生展示相应的数学思维过程 使学生有机会经历数学概念抽象的各个阶段 引导学生独立自主地开展思维活动 深入探究 从而创造性地解决问题 最终形成概念 获得方法 培养能力 教学中使用了多媒体投影和计算机来辅助教学 目的是充分发挥其快捷 生动 形象的特点 为学生提供直观感性的材料 有助于学生对问题的理解和认识 教学过程的设计 为达到本节课的教学目标 突出重点 突破难点 把教学过程设计为四个阶段 创设情境 引入课题 归纳探索 形成概念 掌握证法 适当延展 归纳小结 提高认识 德国著名心理学家艾宾浩斯研究数据 1 艾宾浩斯遗忘曲线 2 某市一天24小时的气温变化图 y f x x 0 24 说出气温在哪些时间段内是逐渐升高或下降的 问题1作出下列函数的图象 并指出图象的变化趋势 问题2你能明确地说出 图象呈逐渐上升趋势 的意思吗 在某一区间内 图象在该区间呈上升趋势 图象在该区间呈下降趋势 函数的这种性质称为函数的单调性 问题3如何用数学语言表述一个函数是增函数呢 0 x 1 对于某函数 若在区间 0 上 当x 1时 y 1 当x 2时 y 3 能否说在该区间上y随x的增大而增大呢 思考 2 若x 1 2 3 4 时 相应地y 1 3 4 6 能否说在区间 0 上 y随x的增大而增大呢 3 若有n个正数x1 x2 x3 xn 它们的函数值满足 y1 y2 y3 yn 能否就说在区间 0 上y随着x的增大 而增大呢 若x取无数个呢 X不断增大 f x 也不断增大 0 X Y X1 X2 f X1 f X2 问题4如何用数学语言表述一个函数是增函数呢 问题5 如何定义一个函数是单调减函数 减函数定义 如果函数y f x 在区间I是单调增函数或单调减函数 那么就说函数y f x 在区间I上具有单调性 单调增区间和单调减区间统称为单调区间 单调区间 y f x x 0 24 例1根据图象说出函数的单调区间 0 4 4 14 14 24 例2画出下列函数图象 并写出单调区间 两区间之间用和或用逗号隔开 能否写成 x1 x2 例 求证 函数在区间上是单调增函数 1 怎样证明 2 练习 填表 函数 单调区间 k 0 k 0 k 0 k 0 增函数 减函数 减函数 增函数 单调性 函数 单调区间 单调性 增函数 增函数 练习2 填表 二 减函数 减函数 2 函数单调性的定义 4 证明函数单调性的步骤 回顾小结 本节课主要学习了以下内容 3 判断单调性的方法 图象 定义 1 单调函数的图象特征 布置作业 必做 P43习题2 1 3 1 4 7 2 研究的单调性 并给出证明 试求出该函数的值域 选做 1 判断函数在区间上的单调性 证明 设是 0 上的任意两个实数 且 小结 1 函数单调性是对定义域的某个区间而言的 反映的是在这一区间上函数值随自变量变化的性质 2 判断函数单调性的方法 1 利用图象 在单调区间上 增函数图象从左向右是上升的 减函数图象是下降的 2 利用定义 用定义证明函数单调性的一般步骤 任意取值 作差变形 判断符号 得出结论 七 小结回顾 练习1证明函数在区间上是减函数 证明 设量 比较
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- java顺序查找面试题及答案
- 煤矿把钩工考试题及答案
- 家电公司分支机构考核办法
- 家电公司加盟商管理规章
- 排水考试题库及答案
- 抗代谢药试题及答案
- 湖南驾考试题及答案
- 山东成考试题及答案
- 三级健康管理师考试题及答案
- 非遗传承:童心匠艺启蒙
- 新课标高中物理模型与方法专题19 电磁感应中的单导体棒模型(解析版)
- 第4章无人机-气象
- 工程质量检测投标方案(技术标)
- 飞机结构:飞机液压系统完整版
- 医学腺垂体功能减退症(0001)专题课件
- 国家级自然保护区科学考察技术方案
- 危险化学品培训教材PPT
- 叠片机说明书
- 磷酸钠安全周知卡、职业危害告知卡、理化特性表
- 知名投资机构和投资人联系方式汇总
- 循环流化床锅炉设备及系统课件
评论
0/150
提交评论