已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
例2.1 muw0=1.785; a=0.03368; b=0.000221; t=0:20:80; muw=muw0./(1+a*t+b*t.2)例2.2 数值数组和字符串的转换 a=1:5; b=num2str(a); a*2ans = 2 4 6 8 10 b*2ans =98 64 64 100 64 64 102 64 64 104 64 64 106例2.9比较左除和右除求解恰定方程 rand(seed,12); a=rand(100)+1.e8; x=ones(100,1); b=a*x; cond(a)ans = 5.0482e+011 tic;x1=b/a;t1=toct1 = 0.4711 er1=norm(x-x1)er1 = 139.8326 re1=norm(a*x1-b)/norm(b)re1 = 4.3095e-009 tic;x1=ab;t1=toct1 = 0.0231 tic;x1=ab;t1=toct1 = 0.0011 er2=norm(x-x1)er2 = 1.5893e-004 re1=norm(a*x1-b)/norm(b)re1 = 4.5257e-016例2.14:计算矩阵的指数 b=magic(3); expm(b)ans = 1.0e+006 * 1.0898 1.0896 1.0897 1.0896 1.0897 1.0897 1.0896 1.0897 1.0897例2.18:特征值条件数 a=-149 -50 -154;537 180 546; -27 -9 -25a = -149 -50 -154 537 180 546 -27 -9 -25 V,D,s=condeig(a)V = 0.3162 -0.4041 -0.1391 -0.9487 0.9091 0.9740 -0.0000 0.1010 -0.1789D = 1.0000 0 0 0 2.0000 0 0 0 3.0000例2.41 5阶多项式在【0,2pi】最小二乘拟合 x=0:pi/20:pi/2; y=sin(x); a=polyfit(x,y,5); x1=0:pi/30:pi*2; y1=sin(x1); y2=a(1)*x1.5+a(2)*x1.4+a(3)*x1.3+a(4)*x1.2+a(5)*x1+a(6); plot(x1,y1,b-,x1,y2,r*) legend(原曲线,拟合曲线) axis(0,7,-1.2,4)例3.7 gradient绘制矢量图 x=0:pi/20:pi/2; y=sin(x); a=polyfit(x,y,5); x1=0:pi/30:pi*2; y1=sin(x1); y2=a(1)*x1.5+a(2)*x1.4+a(3)*x1.3+a(4)*x1.2+a(5)*x1+a(6); plot(x1,y1,b-,x1,y2,r*) legend(原曲线,拟合曲线) axis(0,7,-1.2,4) x,y=meshgrid(-2:.2:2,-2:.2:2); z=x.*exp(-x.2-y.2); px,py=gradient(z,.2,.2); contour(z), hold on quiver(px,py) hold off例 基本绘图命令 rand(100,1);plot(y)例4.1 绘制如图 x=1:0.1*pi:2*pi; y=sin(x); z=cos(x); plot(x,y,-k,x,z,-.rd)例4.5 绘制如图 x=1:10; y=rand(10,1); bar(x,y); x=0:0.1*pi:2*pi; y=x.*sin(x); feather(x,y)例4.6 绘制如图 lim=0,2*pi,-1,1; fplot(sin(x),cos(x),lim)例4.7绘图如下 x=2,4,6,8; pie(x,math,english,chinese,music)例4.9 绘图如下三维螺旋线 x=0:pi/50:10*pi; y=sin(x); x=0:pi/50:10*pi; y=sin(x); z=cos(x); plot3(x,y,z);例4.10 绘图如下。矩阵三维图 x,y=meshgrid(-2:0.1:2,-2:0.1:2); z=x.*exp(-x.2-y.2); plot3(x,y,z)例4.13绘图如下 X,Y=meshgrid(-4:0.5:4); Z=sqrt(X.2+Y.2); meshc(Z)例4.19 绘制柱面图 x=0:pi/20:pi*3; r=5+cos(x); a,b,c=cylinder(r,30); mesh(a,b,c)例4.20 地球表面气温分布示意图 a,b,c=sphere(40); t=abs(c); surf(a,b,c,t); axis(equal) axis(square) colormap(hot)例4.24坐标标注函数应用示意图 x=1:0.1*pi:2*pi; y=sin(x); plot(x,y) xlabel(x(0-2pi),fontweight,bold); ylabel(y=sin(x),fontweight,bold); title(正弦函数,fontsize,12,fontweight,bold,fontname,隶书)例4.30 同一张图绘制几个三角函数 x=0:0.1*pi:2*pi; y=sin(x); z=cos(x); plot(x,y,-*) hold on plot(x,z,-o) plot(x,y+z,-h) legend(sin(x),cos(x),sin(x)+cos(x),0) hold off例4.31 4个子图中绘制不同的三角函数图 x=0:0.1*pi:2*pi; subplot(2,2,1); plot(x,sin(x),-*); title(sin(x); subplot(2,2,2); plot(x,cos(x),-o); title(cos(x); subplot(2,2,3); plot(x,sin(x).*cos(x),-x); title(sin(x)*cos(x); subplot(2,2,4); plot(x,sin(x)+cos(x),-h); title(sin(x)+cos(x);例7.3正弦曲线插值示例 x=0:0.1:10; y=sin(x); xi=0:.25:10; yi=interp1(x,y,xi); plot(x,y,o,xi,yi)例7.7 x 0.5 1.0 2.0 2.5 3.0 y 1.75 2.45 3.81 4.80 8.00 8.60 y=span1,x,x2,最小二乘法拟合 x=0.5 1.0 1.5 2.0 2.5 3.0; y=1.75 2.45 3.81 4.80 8.00 8.60; a=polyfit(x,y,2)a = 0.4900 1.2501 0.8560 x1=0.5:0.05:3.0; y1=a(3)+a(2)*x1+a(1)*x1.2; plot(x,y,*) hold on plot(x1,y1,-r)例7.8最小二乘法求y=a+b*x2的经验公式Xi 19 25 31 38 44Yi 19.0 32.3 49.0 73.3 98.8 x=19 25 31 38 44; y=19.0 32.3 49.0 73.3 98.8; x1=x.2x1 = 361 625 961 1444 1936 x1=ones(5,1),x1x1 = 1 361 1 625 1 961 1 1444 1 1936 ab=x1yab = 0.5937 0.0506 x0=19:0.2:44; y0=ab(1)+ab(2)*x0.2; clf plot(x,y,o) hold on plot(x0,y0,-r)例7.10求积分function y=fun(t)y=exp(-0.5*t).*sin(t+pi/6); d=pi/1000; t=0:d:3*pi; nt=length(t); y=fun(t); sc=cumsum(y)*d; scf=sc(nt)scf = 0.9016 z=trapz(y)*dz = 0.9008例7.12用Newton-cotes公式求积分Fun.mfunction f=fun(x)f=exp(-x/2);quad8(fun,1,3,1e-10)例 微分函数 x=sym(x); diff(sin(x2) ans = 2*x*cos(x2)例题7-44 273-274页fun.mfunction f=fun(x,y)f=-2*y+2*x.2+2*x; x,y=ode23(fun,0,0.5,1); xans = Columns 1 through 7 0 0.0400 0.0900 0.1400 0.1900 0.2400 0.2900 Columns 8 through 12 0.3400 0.3900 0.4400 0.4900 0.5000 yans = Columns 1 through 7 1.0000 0.9247 0.8434 0.7754 0.7199 0.6764 0.6440 Columns 8 through 120.6222 0.6105 0.6084 0.6154 0.6179例题7-45tic;p1=flops;x,y=ode23(fun,0,0.5,1);p2=flops;t=toc;p=p2-p1; bj例题7-46function f=f(x,y)f=-2 1;988 -999*y+2*sin(x);999*(cos(x)-sin(x); ode23(f,0,10,2,3); a=-2 1;998 -999; %求方程的刚性比 b1=max(abs(real(eig(a); b2=min(abs(real(eig(a); s=b1/b2s = 1000例7-17/18 246页 a=0.4096, 0.1234, 0.3678, 0.2943;0.2246, 0.3872, 0.4015, 0.1129;0.3645, 0.1920, 0.3781, 0.0643;0.1784, 0.4002, 0.2786, 0.3927; aa = 0.4096 0.1234 0.3678 0.2943 0.2246 0.3872 0.4015 0.1129 0.3645 0.1920 0.3781 0.0643 0.1784 0.4002 0.2786 0.3927 b=0.4043 0.1550 0.4240 -0.2557; x=abx = -0.1819 -1.6630 2.2172 -0.4467265页,例7-39 (非线性方程组的符号解法)g.mfunction y=g(x)y(1)=0.7*sin(x(1)+0.2*cos(x(2);y(2)=0.7*cos(x(1)-0.2*sin(x(2); x0=0.5 0.5; fsolve(g,x0)No solution found.fsolve stopped because the problem appears regular as measured by the gradient,but the vector of function values is not near zero as measured by thedefault value of the function tolerance.ans = -0.0493 1.5215307页,例9-21 x=0.236 0.238 0.248 0.245 0.243; 0.257 0.253 0.255 0.254 0.261; 0.258 0.264 0.259 0.267 0.262; anova1(x)ans = 1.3431e-005308页,例9-22 a=58.2000 56.2000 65.3000;52.6000 41.2000 60.8000;49.1000 54.1000 51.6000;42.80
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校消防设备日常维护计划
- 工业机器人操作人员培训试题及答案
- 蒸煮炉项目可行性研究报告(总投资6000万元)(25亩)
- 校园文化数据采集与分析系统建设方案
- 燃气工程项目进度管理方案
- 电缆填充材料生产线项目节能评估报告
- 2025年成人高考《语文》易错点解析与真题演练试卷(附答案)
- 粮油产业高质量发展的策略及实施路径
- 建筑污水提升系统技术方案
- 小型污水处理设备选型方案
- 江苏省无锡市江阴市部分学校2025-2026学年高二上学期期中联考数学试卷(无答案)
- 客户关系管理客户关系分级分类模板
- 绿化维护服务保证书
- 榆林镇北台红石峡景区招聘考试真题2024
- 2025年6月浙江省高考历史试卷真题(含答案解析)
- 2024甘肃会考信息技术试题
- 2025秋青岛版(五四制)2024三年级上册科学期中检测卷(附参考答案)
- 2025广东深圳市罗山科技园开发运营服务有限公司第二批招聘4人笔试考试参考试题及答案解析
- 2025云南宣富高速楚雄市东南绕城高速元绿高速那兴高速高速公路收费员招聘341人笔试历年参考题库附带答案详解
- 2025医院安全隐患排查治理专项行动的实施方案(详细版)
- 彼得·蒂尔:硅谷教父的叛逆人生
评论
0/150
提交评论