


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
孟津第二县直中学单元主题备课导学案编号: 时间: 年 月 日年级八学科数备课人尚伟莉 高天朝主题 19.1 矩形1课型 新授课补充与修订教材分析教学目标(一)知识目标:掌握矩形的识别方法及应用,领会主动实验、探究新知的方法(二)能力目标:培养学生推理、发现、分析、动手及解决问题的能力(三)情感目标:培养学生的科学精神和创新思维习惯,培养学生的团结协作精神 教学重点难点教学重点:矩形的性质及其推论教学难点:矩形的本质属性及性质定理的综合应用 教法及学法独立思考、生生交流、小组交流、师生交流,教具(一个活动的平行四边形),导学过程一自学提纲1请你画一个矩形,并画出它们的对角线观察图形,你能说出它有哪些性质吗?试一试2_叫做矩形3矩形的对边_;四个角都是_;对角线_。4_的平行四边形是矩形对角线_的平行四边形是矩形有三个角是直角的四边形是_形。二新授1、制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别)矩形的性质:既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质矩形性质1:矩形的四个角都是直角矩形性质2:矩形对角线相等设问:如何用理论推理的方法来证明矩形的对角线相等呢?(让学生思考并提问回答,再让学生板书)讲矩形判定定理1,对角线相等的平行四边形是矩形。2、例题讲解:见P108例题。矩形判定定理1。除用定义判定矩形外,还有什么方法判定一个四边形或平行四边形是矩形呢?(引导学生从平行四边形性质定理与判定定理的关系考虑)定理2 有三个角是直角的四边形是矩形。问:矩形判定定理1是矩形性质定理1的逆定理吗?(不是) 判定定理的对象是四边形还是平行四边形?(四边形) 谁能口述证明? 证明:A+B+C+D=360,A=B=C=90,D=90ABCD,ADBC D 又A=90,四边形ABCD是矩形。(有一个角是直角的平行四边形是矩形)三、课堂小结1具有平行四边形的所有性质2 判定定理四、达标测评1、思考题:已知如图1,是矩形对角线交点,平分,求的度数(让学生板书,然后教师讲评) 图12、如图20-2-5所示,在矩形ABCD中,对角线AC、BD相交于点O,AE BD于E,则:(1)图中与BAE相等的角有_;(2)若AOB=60,则AB:BD_。图中DOC是_三角形(按边分) 五、布置作业:见P110练习第1题、第2题。一个角是直角的平行四边形 对角线相等的平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教育培训师专业知识考核试题及答案解析
- 2025年建筑设计师资格考试试题及答案解析
- 2025年化妆师技能考核试题及答案解析
- 2025年会展设计面试模拟题及答案
- 2025年教育师中级面试模拟考试题
- 初中双谱教学课件
- 2025年老年活动中心面试技巧及答案集
- 2025年农机长助理笔试冲刺模拟题
- 2025年燃气储运初级面试bi备知识题
- 希沃白板课件教学
- 上海开放大学 《公共部门人力资源管理》作业答案
- 高职药学专业《药物化学》说课稿
- 幼教培训课件:《幼儿园如何有效组织幼儿户外自主游戏》
- 立足单元视角 提升核心素养
- 金属非金属露天矿山及尾矿库重大事故隐患判定标准解读
- 股权投资撤资通知书
- 应征公民政治考核表(含各种附表)
- T-CACM 1371.5-2021 中医药真实世界研究技术规范基于证据的中药有效性及安全性评价
- 跨文化沟通障碍原因分析及解决方法
- ±800kV等级及以上高压直流输电系统成套设计规程(修订)
- 2022版义务教育(道德与法治)课程标准(附课标解读)
评论
0/150
提交评论