例谈极限思想的渗透.doc_第1页
例谈极限思想的渗透.doc_第2页
例谈极限思想的渗透.doc_第3页
例谈极限思想的渗透.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例谈极限思想的渗透 作者:浙江省仙居县岭下张小学 张卫星录入时间:2014-6-27阅读次数:263摘 要:极限是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法。日常数学教学要积极挖掘体现极限思想的知识点,根据教学内容的差异,选择不同的渗透策略,以促进学生的感悟。关键词:数学教学 极限思想 渗透策略极 限思想是微积分的基本思想,用以描述某个无限变化过程的终极状态,它也是其他相关数学分支,如级数、复变函数、实变函数的理论基础。极限也是人们从有限中 认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,是事物转化的重要环节。因此,我们在日常数学教学中要积极挖掘体现极限思想的知识点, 将极限思想很好地渗透于教学之中。根据教学内容的差异,可以选择不同的渗透策略。一、关键点大张旗鼓地渗透所 谓关键点,即极限思想是认识新知的基础,没有对极限思想的感悟,就不可能深刻把握新知的内涵。在小学阶段,这样的知识点比较多,如“圆面积公式”“循环小 数”“角的认识”。笔者认为,在教学这些知识点时要大张旗鼓地进行渗透,让学生在认识新知的同时体验极限思想的无穷魅力。在教学“射线的初步认识”一课时,一位教师组织了如下的教学过程师 请同学们在白纸上画一条3厘米长的线段,说一说它有什么特点?生 师 请同学们在白纸上画一条5厘米长的直线,有什么问题?生 不对,直线是没有长短的生 直线可以向两边无限延长。师 无限延长是什么意思?生 就是无限的长,没完没了的意思下 面请同学们仔细观察老师的演示。 (用红外线光电筒照在黑板上)请同学们画出来。师 (打开窗户,将红外线光电筒照射向天空)如果光束没有受到阻碍的话,请你画出来这就是我们今天要学的射线,它有什么特点呢?生 一个端点、直的、可以向一个方向无限延长、不可度量。师 射线是直线的一半吗?生 是的,因为直线上点一个点,就可以有 两条射线。生 不对,它们都是可以无限延长的,所以无法比较,不能说是谁的一半让 学生一下子认识到图形的无限性是有一定难度的。上述教学中,教师通过学生自己动手,建立起对线段、射线和直线的直观感悟。在红外线的演示下,学生轻松建立 了直线、射线的“无限”的空间感观,大张旗鼓又不失严密。在教师的引领下,学生走出有限的几何观念,形成无限的几何观念,既认识了新知,又从中感悟到极限的思想。二、细微点潜移默化地渗透所 谓细微点,就是有一些知识点可以涉及极限思想,也可以不涉及极限思想,但如果涉及极限思想可以让学生得到更深刻的认识。对于这些知识点,需要教师教学智 慧、教学经验的支撑,更需要教师主观意愿的努力。如果教师能够把握这些知识点,并进行潜移默化的渗透,就可以让学生体验到极限的内涵,从而让学生的数学素 养得到提升,对数学本质的认识也就更加到位。教学分数的意义和性质单元复习课时,一位教师在学生掌握分数大小的基本比较方法后,设计了如下几个有价值的数学问题进行引领师 你能举出一个比 3/4要小、但又与3/4很接近的分数吗?生 299/400、2999/4000师 (指着投影上表示3/4的数轴)你们刚才所举的数,如果在数轴上表示出来,应该在哪儿呢?学生感受到这些数与表示3/4的点越来越近了,但始终还在3/4的左边。师 下面,请同学们举出比3/4大的数。生 301/400、3001/4000师 刚才大家所举的分数都在3/4右边,而且与3/4越来越接近。现在能否举出离3/4略远一些,但又小于1的分数呢?生 7/8、15/16、23/24师 刚才我们联想到的分数都比1要小,那比1要小的分数,我们又叫它什么数呢?生 真分数。(教师板书:真分数1)师 你们还能联想到假分数、举出假分数吗?(教师板书:假分数1)学 生的联想不单单是对数与数之间的联想,而是借助于数轴,形象地描述了点与数对应的关系。通过这样的联想,学生进一步认识到了任何不同的两数之间存在着无数 多个数(数轴两点之间有无数个点),也进一步认识到要向一个数无限地靠近,可以利用分数的基本性质把一个分数的分子与分母不断地去乘一个比较大的数,然后 把这个分数的分子减去1或加上1,就可以得到与这个数很靠近的数了,这就是极限思想的渗透。这种渗透需要教师的精心预设并刻意引导,但对学生来说却是潜移默化的。三、关节点深入浅出地渗透所 谓关节点,就是各知识点联结的地方。因此,关节点往往在复习课内碰到。复习课就是把平时相对独立进行教学的知识,特别是其中带有规律性的知识,以再现、整 理、归纳等办法串起来,进而加深学生对知识的理解、沟通,并使之条理化、系统化。而能把这些知识串起来的主线往往就是知识的关节点。如果关节点蕴含极限思 想,我们就要进行深入浅出地渗透。为此,在上复习课时教师首先要厘清知识之间的内在联系,然后捕捉它们之间蕴含的极限思想,最后有计划的加以渗透。教 学六年级下册“平面图形面积的整理与复习”这一课时,大部分教师都会以长方形为核心进行整理。除此以外,我们也完全可以以梯形的面积公式为核心,将其他各 个图形联系起来,从而使学生建立更为丰富和合理的认知结构。而以梯形为核心进行梳理的主要手段可以借助极限思想将公式进行联络。利用极限思想得到三角形的 面积计算公式,方法是让梯形的上底趋于0,梯形即趋于三角形,梯形的面积计算公式当上底趋于时的极限就是三角形的面积计算公式。我们甚至可以把长方形、正方形、平行四边形面积计算公式都看成是梯形面积计算公式的极限形式。于是,可以构建出下面的知识网络系统:可见,在关节点渗透极限思想是教师深思熟虑的结果,可以更好地完善学生的认知结构。四、枝节点有理有据地渗透所 谓枝节点,即在新课巩固环节需要对一些知识进行强化的点。因此,枝节点往往在新课练习中体现。一些教师在练习设计时往往侧重于对基础知识的巩固,针对培养 学生数学思想方法的练习题则相对较少。然而,学生的数学思想是靠不断的积累、不断的运用形成的,能够自主运用数学思想解决问题是学生数学素养的高水平体 现,它应该贯穿于数学学习的始终。练习作为学生数学学习的重要环节,也应该承担这方面的任务。因此,教师在设计练习题时要根据数学知识的特点,有理有据地 渗透极限思想。如在教学商不变的规律时,一位教师这样组织教学出示:(32)(8)4。师 这题怎么填?生 填4。师 有不同答案吗?生 可填19各数。生 可以填任何数,只要相同就可以了。师 你们明白他的意思吗?生 0除外的任何相同的数都可以。如 果单从解题的角度看,上述这道题,学生很容易找到答案,而且费时不会太多,但学生们却得不到此题的精髓,也就是题中所包含的规律和体现的数学思想。因此, 教师应想办法让学生自己挖掘出这些规律和思想。“有不同的答案吗?”激起了学生的思维欲望,思路迅速打开,从而使学生感受到答案的无穷,而答案的无穷也就 是极限思想的具体表现,可以使学生头脑中产生朦胧的极限定义。当然,这种无穷是商不变规律的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论