全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18.1勾股定理第一课时说课稿各位评委老师大家好:今天我说课的课题是勾股定理,下面就教材分析、教学方法选择、学法指导、教学程序设计等四个方面,谈谈我对本课题的理解和认识。一、教材分析(一)、教材地位作用这节课是九年制义务教育课程标准实验教科书,人教版八年级下第十八章第一节第一课时。勾股定理是人类数学最伟大的发现之一,也是几何学中几个最重要、最基本的定理之一。它紧密联系了数学中最基本的两个量数和形。它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,又是后续学习解直角三角形的基础,在实际生活中用途也很大。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)、教学目标(八年级学生对新事物充满好奇,他们喜欢动手,勤于思考,乐于探究,已经具备了一定的探索新知的能力。因此,我制定如下教学目标)1、知识与技能目标:理解并掌握勾股定理的内容和证明,能够运用勾股定理进行简单计算和运用;2、过程与方法目标在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学过程,并体会数形结合和从特殊到一般的数学思想方法。3、情感态度与价值观目标:介绍古代在研究勾股定理方面取得的伟大成就。在探索问题的过程中,培养学生的合作交流意识和探索精神。(三)、教学重点及难点(新课程提出教师是学生学习的引导者、合作者、参与者,勾股定理的证明与运用,对于锻炼学生的动手操作能力,培养其逻辑思维意识提供了有利的平台,为学生在今后解决有关线段的问题奠定数学模型。因此,本节课的教学重点是)【教学重点】勾股定理的证明与运用【教学难点】用面积法和拼图法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难二、学生分析与教法分析前面,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过面积法(拼图法)证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用自制的多媒体课件进行直观教学,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。在教师的组织引导下,学生采用自主探究、合作交流的研讨式学习方式,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人。四、教学程序设计(一)创设情境,探索新知1、2002年国际数学大会在我国北京召开,它是世界上最高水平的数学科学学术会议,被誉于数学的“奥运会”这就是我们的会徽。该图案是由哪些图形拼成的?它有什么含义呢?板书:18.1勾 股 定 理(1)2、古希腊的数学家毕达哥拉斯在朋友家做客的时候,偶然间发现朋友家的地砖上竟然反映着直角三角形三边的某种对应关系,下面我们也来看看彩色部分的图案,你能从中发现什么呢?(1)正方形A、B 、C、的面积有什么数量关系?(2)以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?【设计说明】这一环节取材于生活,自然、贴切,为探索勾股定理提供了背景。通过图片展示,以问题激发学生好奇探索,主动学习的欲望,以直观形象的图形观察,引导学生由三个正方形面积之间的关系过渡到等腰直角三角形的三边关系,为下一步的面积计算验证直角三角形三边关系奠定基础。(二)实验操作,获取新知1、通过刚才的问题我们发现等腰直角三角形的三边具有“两直角边的平方和等于斜边的平方”这一结论,那么一般的直角三角形是否也有这样的特点呢?2、组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。3、通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?4、对于更一般的情形将如何验证呢?【设计说明】为了突破用面积法证明直角三角形三边关系这一难点,我先让学生自己动手,小组合作,互相交流,共同分享,进而得到直角三角形两直角边的平方和等于斜边的平方。利用多媒体课件由特殊到一般对直角三角形三边关系进行探索,使直角三角形数与形的关系展示得更为直观,更易被学生接受,更有利于难点的突破,为学生接下来归纳结论打下基础,同时让学生体会到观察、猜想、归纳、验证的数学过程,使学生分析和解决问题的能力得到提高,这符合学生的认知规律。(三)归纳验证,完善新知1、猜想:命题:如果直角三角形的两条直角边分别a和b,斜边为c,那么。2、验证命题:利用学具拼图,用面积法证明结论。3、介绍古今中外对勾股定理的研究,及“勾,股,弦”的含义,从而进行点题。【设计说明】在活动中,让学生体会到成功的喜悦,进一步激发学生的学习热情,加深对新知的理解。通过介绍勾股定理的有关研究历史,感受数学文化,鼓励学生善于观察,大胆猜想,勇于探索数学知识,从而体会到祖国数学历史的悠久,增强民族自豪感。(四)课堂小结,巩固新知、本节课我们经历了怎样的学习过程?经历了从实际问题引入数学问题然后发现定理,再到探索定理,最后学会验证定理及应用定理解决实际问题的过程。、本节课我们学到了什么?通过本节课的学习我们不但知道了著名的勾股定理,还知道从特殊到一般的探索方法及借助于图形的面积来探索、验证数学结论的数形结合思想。、学了本节课后你有什么感想?很多的数学结论存在于平常的生活中,需要我们用数学的眼光去观察、思考、发现,这节课我们还受到了数学文化辉煌历史的教育。(五)布置作业,拓展新知1、阅读教材7172页阅读与思考2、通过查找、翻阅有关证明勾股定理的多种方法的资料,整理并写在作业本上。(推荐网址搜索:百度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务需求分析调研模板行业版
- 人力资源管理及培训工具
- 电工毕业考试题库及答案
- 电工基础双控考试题库及答案
- 风险评估与管理工具企业风险识别与应对策略手册
- 行业的项目风险管理工具包
- 2025年生态环境行业生态环境保护与可持续发展研究报告及未来发展趋势预测
- 企业宣传资料与素材标准化模板
- 2025年人工智能行业智能客服应用案例分享报告
- 2025年网红经济行业网红营销与社交媒体变现模式研究报告及未来发展趋势预测
- ICU镇痛镇静药物使用
- 中西医临床医学五年发展规划纲要
- 史记商君列传的课件
- 云南省楚雄彝族自治州双柏县2024-2025学年五年级上学期语文11月期中试卷(含答案)
- 广东省广州市花都区2024-2025学年六年级上学期语文期中试卷(含答案)
- 消毒供应中心包装技术
- DB14∕T 3147-2024 纯电动后背式换电载货汽车换电站建设指南
- 肥厚性心肌病病例汇报
- DBJ50-T-306-2024 建设工程档案编制验收标准
- 华为驻外员工管理办法
- 三基工作培训课件
评论
0/150
提交评论