


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第26课时 对数函数(4)【学习导航】学习要求1、 进一步巩固对数函数的性质;2、 掌握简单的对数不等式求解方法;3、 掌握对数函数与恒成立问题。【精典范例】一、对数不等式的求解方法例1、解关于x的对数不等式;2 loga (x4)loga(x2).思维分析:可以去掉对数符号,化为一般的代数不等式求解;同时考虑到底数a的取值范围不确定,故应进行分类讨论。解:原不等式等价于(1)当a1时,又等价于解之,得x6。(2)当0a1时,又等价于解之,得4x1时,为(6,+ );当0a1时,为(4,6).二、以对数函数为模型的抽象函数问题例2、已知函数f(x)的定义域是(0,+),满足f(4)=1,f(xy)=f(x)+f(y).(1)证明f(1)=0;(2)求f(16);(3)试证f(xn)=nf(x),nN*.思维分析:这显然是一个抽象函数。根据题目给定的三个条件,可以将对数函数y=log4x作为该函数的原型,从而找到问题的解决思路与方法。(1)证明:令x=y=1,则得f(1)=f(1)+f(1),故f(1)=0;(2)解:令x=y=4,则有f(16)=f(44)=f(4)+f(4)=1+1=2;(3)证明:f(xn)=f(xxx) (n个x)=f(x)+f(x)+f(x)=nf(x) (n个f(x)三、对数函数与恒成立问题例3: 已知:在上恒有,求实数的取值范围。分析:去掉绝对值符号,转化为含对数式的不等式。【解】,当时,由在上恒成立 ,得 在上恒成立, (1)当时,由在上恒成立 ,得 在上恒成立,(2)由(1)(2)可知,实数的取值范围为思维点拔:本题的特点是给出了自变量的取值范围,求字母的取值范围,它与解不等式有本质的区别,在上恒成立,是指在上的所有值都大于1,这是一个不定问题,但转化为函数的最大(最小)值后,问题就简单了,这类问题的一般结论是:(1)(为常数,)恒成立,(2)(为常数,)恒成立,利用这两个结论,可以把“不定”问题转化为“定”的问题。追踪训练1、解不等式解答:x|1xx|x0满足f()=f(x)f(y),当x1时有f(x)0,试判断f(x)的单调性并证明.解答:f(x)在(0,+)上是减函数。证明略。4、已知函数,当时,恒成立,求实数的取值范围。解:要使当时,恒成立,即要:当恒成立令(1) 当,即时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院反商业贿赂管理制度
- 胶合板购销合同
- Unit 1~Unit 2 基础综合卷(含答案)译林版(2024)七年级英语上册
- 烹饪营养与卫生(第3版)-课件 3.项目二任务六.坚果类
- 应交增值税课件
- 巡逻养护安全培训内容课件
- 2025年港股海外中资股投资策略分析报告:花开堪折直须折
- 输电运维班组课件
- 输煤运行安全培训需求课件
- 小鸭救小鸡教学课件
- 关于PedSQL-4.0儿童生存质量测定量表调查
- 年产62万吨甲醇制烯烃(MTO)项目初步设计说明书
- 联通创新人才认证(解决方案)考试题库(附答案)
- 全成本管理探索与实践
- 电烙铁焊接技术培训
- ICU患者的早期活动
- 出纳课件 转账支票pptx
- TSZUAVIA 009.11-2019 多旋翼无人机系统实验室环境试验方法 第11部分:淋雨试验
- ps6000自动化系统用户操作及问题处理培训
- 商务礼仪情景剧剧本范文(通用5篇)
- 2021年东台市城市建设投资发展集团有限公司校园招聘笔试试题及答案解析
评论
0/150
提交评论