




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1本章涉及的概念比较多,要真正理解它们的实质,搞清它们的区别与联系了解随机事件发生的不确定性和频率的稳定性,要进一步了解概率的意义以及频率与概率的区别2应用互斥事件的概率加法公式,一定要注意首先确定事件彼此是否互斥,然后求出各事件分别发生的概率,再求和求较复杂的概率通常有两种方法 一是将所求事件转化为彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式p(a)1p()(事件a与互为对立事件)求解3对于古典概型概率的计算,关键要分清基本事件的总数n与事件a包含的基本事件的个数m,再利用公式p(a)求出概率有时需要用列举法把基本事件一一列举出 ,在列举时必须按某一顺序做到不重不漏4对于几何概型事件概率的计算,关键是求得事件a所占区域和整个区域的几何度量,然后代入公式求解5学习本章的过程中,要重视教材的基础作用,重视过程的学习,重视基本数学思想和数学方法的形成和发展,注意培养分析问题和解决问题的能力题型一随机事件的概率1有关事件的概念(1)必然事件 在条件s下,一定会发生的事件,叫作相对于条件s的必然事件,简称必然事件(2)不可能事件 在条件s下,一定不会发生的事件,叫作相对于条件s的不可能事件,简称不可能事件(3)确定事件 必然事件与不可能事件统称为相对于条件s的确定事件,简称确定事件(4)随机事件 在条件s下可能发生也可能不发生的事件,叫作相对于条件s的随机事件,简称随机事件(5)事件的表示方法 确定事件和随机事件统称为事件,一般用大写字母a,b,c表示2对于概率的定义应注意以下几点(1)求一个事件的概率的基本方法是通过大量的重复试验(2)只有当频率在某个常数附近摆动时,这个常数才叫作事件a的概率(3)概率是频率的稳定值,而频率是概率的近似值(4)概率反映了随机事件发生的可能性的大小(5)必然事件的概率为1,不可能事件的概率为0,故0p(a)1.例1对一批u盘进行抽检,结果如下表 抽出件数a50100200300400500次品件数b345589次品频率(1)计算表中次品的频率;(2)从这批u盘中任抽一个是次品的概率约是多少?(3)为保证买到次品的顾客能够及时更换,要销售2000个u盘,至少需进货多少个u盘?解(1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.(2)当抽取件数a越 越大时,出现次品的频率在0.02附近摆动,所以从这批u盘中任抽一个是次品的概率约是0.02.(3)设需要进货x个u盘,为保证其中有2000个正品u盘,则x(10.02)2000,因为x是正整数,所以x2041,即至少需进货2041个u盘跟踪训练1某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下 射击次数n102050100200500击中靶心次数m8194492178455(1)该射击运动员射击一次,击中靶心的概率大约是多少?(2)假设该射击运动员射击了300次,则击中靶心的次数大约是多少?(3)假如该射击运动员射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?解(1)由题意得,击中靶心的频率分别为0.8,0.95,0.88,0.92,0.89,0.91,当射击次数越 越多时,击中靶心的频率在0.9附近摆动,故概率约为0.9.(2)击中靶心的次数大约为3000.9270(次)(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化后30次中,每次击中靶心的概率仍是0.9,所以不一定(4)不一定题型二古典概型及其应用古典概型是一种最基本的概率模型,也是学习其他概率模型的基础,在高考题中,经常出现此种概率模型的题目解题时要紧紧抓住古典概型的两个基本特点,即有限性和等可能性另外,在求古典概型问题的概率时,往往需要我们将所有基本事件一一列举出 ,以便确定基本事件总数及事件所包含的基本事件数这就是我们常说的穷举法在列举时应注意按一定的规律、标准,不重不漏例2海关对同时从a,b,c三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位 件)如下表所示工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区abc数量50150100(1)求这6件样品中 自a,b,c各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品 自相同地区的概率解(1)因为样本容量与总体中的个体数的比是,所以样本包含三个地区的个体数量分别是501,1503,1002.所以这6件样品中 自a,b,c三个地区的数量分别为1,3,2.(2)设6件 自a,b,c三个地区的样品分别为a;b1,b2,b3;c1,c2,则从这6件样品中抽取的2件商品构成的所有基本事件为 a,b1,a,b2,a,b3,a,c1,a,c2,b1,b2,b1,b3,b1,c1,b1,c2,b2,b3,b2,c1,b2,c2,b3,c1,b3,c2,c1,c2,共15个每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的记事件d“抽取的这2件商品 自相同地区”,则事件d包含的基本事件有 b1,b2,b1,b3,b2,b3,c1,c2,共4个所以p(d),即这2件商品 自相同地区的概率为.跟踪训练2甲、乙、丙3个盒中分别装有大小相等、形状相同的卡片若干张甲盒中装有2张卡片,分别写有字母a和b;乙盒中装有3张卡片,分别写有字母c,d和e;丙盒中装有2张卡片,分别写有字母h和i.现要从3个盒中各随机取出1张卡片,求 (1)取出的3张卡片中恰好有1张、2张、3张写有元音字母的概率各是多少?(2)取出的3张卡片上全是辅音字母的概率解根据题意画出如图所示的树状图由树状图可以得到,所有可能出现的基本事件有12个,它们出现的可能性相等(1)只有1个元音字母的结果有5个,所以p(1个元音字母);有2个元音字母的结果有4个,所以p(2个元音字母);有3个元音字母的结果有1个,所以p(3个元音字母).(2)全是辅音字母的结果有2个,所以p(3个辅音字母).题型三互斥事件与对立事件1对互斥事件与对立事件的概念的理解(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况(2)利用集合的观点 看,如果事件ab,则两事件是互斥的,此时ab的概率就可用概率加法公式 求,即为p(ab)p(a)p(b);如果事件ab,则可考虑利用古典概型的定义 解决,不能直接利用概率加法公式(3)利用集合的观点 看,如果事件ab,abu,则两事件是对立的,此时ab就是必然事件,可由p(ab)p(a)p(b)1 求解p(a)或p(b)2互斥事件概率的求法(1)若a1,a2,an互斥,则p(a1a2an)p(a1)p(a2)p(an)(2)利用这一公式求概率的步骤 要确定这些事件彼此互斥;先求出这些事件分别发生的概率,再求和值得注意的是 是公式的使用条件,如不符合,是不能运用互斥事件的概率加法公式的3对立事件概率的求法p()p(a)p(a)p()1,由公式可得p(a)1p()(这里是a的对立事件,为必然事件)4互斥事件的概率加法公式是解决概率问题的重要公式,它能把复杂的概率问题转化为较为简单的概率或转化为其对立事件的概率求解例3某人在如图所示的直角边长为4m的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该种作物的年收获量y(单位 g)与它的“相近”作物株数x(单位 株)之间的关系如下表所示 x1234y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1m.(1)完成下表,并求所种作物的平均年收获量,y51484542频数4(2)在所种作物中随机选取一株,求它的年收获量至少为48 g的概率解(1)所种作物的总株数为1234515,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下 y51484542频数2463所种作物的平均年收获量为46.(2)由(1),知p(y51),p(y48).故在所种作物中随机选取一株,它的年收获量至少为48 g的概率为p(y48)p(y51)p(y48).跟踪训练3向三个相邻的军火库投一枚炸弹,炸中第一个军火库的概率为0.2,炸中第二个军火库的概率为0.12,炸中第三个军火库的概率为0.28,三个军火库中,只要炸中一个另两个也会发生爆炸,求军火库发生爆炸的概率解设a、b、c分别表示炸弹炸中第一、第二及第三个军火库这三个事件,事件d表示军火库爆炸,已知p(a)0.2,p(b)0.12,p(c)0.28.又因为只投掷了一枚炸弹,故不可能炸中两个及以上军火库,所以a、b、c是互斥事件,且dabc,所以p(d)p(abc)p(a)p(b)p(c)0.20.120.280.6,即军火库发生爆炸的概率为0.6.题型四几何概型及其应用若试验同时具有基本事件的无限性和每个事件发生的等可能性两个特点,则此试验为几何概型由于其结果的无限性,概率就不能应用p(a)求解,故需转化为几何度量(如长度、面积、体积等)的比值求解几何概型同古典概型一样,是概率中最具代表性的试验概型之一,在高考命题中占有非常重要的位置例4节日前夕,小李在家门前的树上挂了两串彩灯这两串彩灯的第一次闪亮相互独立,且都在通电后的4s内任一时刻等可能发生,然后每串彩灯以4s为间隔闪亮那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2s的概率是()a.b.c.d.答案c解析设两串彩灯同时通电后,第一次闪亮的时刻分别为x,y,则0x4,0y4,而事件a“它们第一次闪亮的时刻相差不超过2s”,即 xy 2,其表示的区域为如图所示的阴影部分由几何概型概率公式,得p(a).跟踪训练4如图所示的大正方形面积为13,四个全等的直角三角形围成一个阴影小正方形,较短的直角边长为2,向大正方形内投掷飞镖,则飞镖落在阴影部分的概率为()a.b.c.d.答案c解析设阴影小正方形边长为x,则在直角三角形中有22(x2)2()2,解得x1或x5(舍),阴影部分面积为1,飞镖落在阴影部分的概率为.1.关于古典概型,必须要解决好下面三个方面的问题 (1)试验结果是否有限且是等可能的;(2)试验的基本事件有多少个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年煤气安全操作面试题及参考答案
- 2025年智慧仓储技术应用专家考试题库及答案全解
- 2025年人力资源管理师初级面试题集锦
- 2025年旅游行业营销策划师招聘笔试模拟题集
- 2025年财务会计实操模拟题集及账务处理技巧含答案
- 2025年物联网技术中级工程师面试题详解及答题技巧
- 2025年护士执业资格中级考试模拟试题及参考答案详解
- 2025年特岗教师招聘考试初中政治面试高分突破策略
- 2025年物资供应链管理与运营实务手册及模拟题集
- 人物描写课件教学设计
- 2025年公安局招聘警务辅助人员考试笔试试题(含答案)
- 工厂车间设备维修维护管理手册
- 奶茶店安全知识培训课件
- 高中英语定语从句超全解析
- 肥胖儿童的运动干预 4
- 中国淘宝村研究报告
- 纺织行业主要工艺流程和用水环节
- DB62∕T 3083-2017 HF永久性复合保温模板现浇混凝土建筑保温体系技术规程
- 现浇梁劳务分包合同
- 人教版八年级下册英语单词表默写版(直接打印)
- Q∕GDW 12070-2020 配电网工程标准化设计图元规范
评论
0/150
提交评论