




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 1数乘向量 第二章 3从速度的倍数到数乘向量 学习目标1 了解向量数乘的概念 并理解这种运算的几何意义 2 理解并掌握向量数乘的运算律 会运用向量数乘运算律进行向量运算 3 理解并掌握两向量共线的性质及其判定方法 并能熟练地运用这些知识处理有关共线向量问题 题型探究 问题导学 内容索引 当堂训练 问题导学 知识点一向量数乘的定义 思考1 实数与向量相乘的结果是实数还是向量 答案 答案向量 思考2 向量3a 3a与a从长度和方向上分析具有怎样的关系 答案 答案3a的长度是a的长度的3倍 它的方向与向量a的方向相同 3a的长度是a的长度的3倍 它的方向与向量a的方向相反 思考3 a的几何意义是什么 答案由实数与向量的积的定义可以看出 它的几何意义就是将表示向量a的有向线段伸长或压缩 当 1时 表示向量a的有向线段在原方向 0 或反方向 0 上伸长为原来的 倍 当 1时 表示向量a的有向线段在原方向 0 或反方向 0 上缩短为原来的 倍 答案 数乘向量一般地 实数 与向量a的积是一个向量 记作 它的长度为 a a 它的方向 当 0时 a与a的方向相同 当 0时 a与a的方向相反 当 0时 a 0 方向任意 梳理 a 思考 知识点二向量数乘的运算律 类比实数的运算律 向量数乘有怎样的运算律 答案 答案结合律 分配律 梳理 向量数乘运算律 1 a a 2 a a a 3 a b a b 思考 知识点三向量共线定理 若b 2a b与a共线吗 答案 答案根据共线向量及向量数乘的意义可知 b与a共线 如果有一个实数 使b a a 0 那么b与a是共线向量 反之 如果b与a a 0 是共线向量 那么有且只有一个实数 使得b a 梳理 1 向量共线的判定定理a是一个向量 若存在一个实数 使得 则向量b与非零向量a共线 2 向量共线的性质定理若向量b与非零向量a共线 则存在一个实数 使得b 非零 b a a 向量的加法 减法和实数与向量积的综合运算 通常称为向量的线性运算 或线性组合 知识点四向量的线性运算 题型探究 解答 类型一向量数乘的基本运算 4a 4b 2 已知向量为a b 未知向量为x y 向量a b x y满足关系式3x 2y a 4x 3y b 求向量x y 由 3 2 得x 3a 2b 代入 得3 3a 2b 2y a 即y 4a 3b 所以x 3a 2b y 4a 3b 解答 1 向量的数乘运算类似于代数多项式的运算 例如实数运算中的去括号 移项 合并同类项 提取公因式等变形手段在实数与向量的乘积中同样适用 但是这里的 同类项 公因式 是指向量 实数看作是向量的系数 2 向量也可以通过列方程和方程组求解 同时在运算过程中多注意观察 恰当的运用运算律 简化运算 反思与感悟 跟踪训练1 1 a b 3 a b 8a 解析 a b 3 a b 8a a 3a b 3b 8a 2a 4b 8a 10a 4b 10a 4b 答案 解析 2 若 其中a b c为已知向量 则未知向量y 答案 解析 命题角度1判定向量共线或三点共线例2已知非零向量e1 e2不共线 类型二向量共线的判定及应用 解 b 6a a与b共线 解答 a b d三点共线 证明 1 向量共线的判断 证明 是把两向量用共同的已知向量来表示 进而互相表示 从而判断共线 2 利用向量共线定理证明三点共线 一般先任取两点构造向量 从而将问题转化为证明两向量共线 需注意的是 在证明三点共线时 不但要利用b a a 0 还要说明向量a b有公共点 反思与感悟 跟踪训练2已知非零向量e1 e2不共线 如果 e1 2e2 5e1 6e2 7e1 2e2 则共线的三个点是 a b d a b d三点共线 答案 解析 命题角度2利用向量共线求参数值例3已知非零向量e1 e2不共线 欲使ke1 e2和e1 ke2共线 试确定k的值 k 1 解答 解 ke1 e2与e1 ke2共线 存在实数 使ke1 e2 e1 ke2 则 k e1 k 1 e2 利用向量共线定理 即b与a a 0 共线 b a 既可以证明点共线或线共线问题 也可以根据共线求参数的值 反思与感悟 跟踪训练3已知a b p三点共线 o为直线外任意一点 若 x y 则x y 1 答案 解析 x 1 y x y 1 类型三用已知向量表示其他向量 答案 解析 解析示意图如图所示 用已知向量表示未知向量的求解思路 1 先结合图形的特征 把待求向量放在三角形或平行四边形中 2 然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量 3 当直接表示比较困难时 可以利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系 然后解关于所求向量的方程 反思与感悟 解答 又 d e为边ab的两个三等分点 当堂训练 1 已知a 5e b 3e c 4e 则2a 3b c等于a 5eb 5ec 23ed 23e 2 3 4 5 1 解析2a 3b c 2 5e 3 3e 4e 23e 答案 解析 2 3 4 5 1 答案 解析 解析如图 作出平行四边形abec m是对角线的交点 故m是bc的中点 且是ae的中点 2 3 4 5 1 3 设e1 e2是两个不共线的向量 若向量m e1 ke2 k r 与向量n e2 2e1共线 则 答案 解析 所以n 2m 此时 m n共线 答案 解析 2 3 4 5 1 a p在 abc内部b p在 abc外部c p在ab边上或其延长线上d p在ac边上 解答 2 3 4 5 1 规律与方法 1 实数与向量可以进行数乘运算 但不能进行加减运算 例如 a a是没有意义的 2 a的几何意义就是把向量a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 巡察整改课件
- 岩棉板保温课件
- 输煤安全培训项目课件
- 产业协同发展工厂承包合作协议
- 企业长期用车租赁管理服务合同
- 公寓租赁退房协议及押金退还细则
- 创业合伙人知识产权共享与利益分配合作协议
- 小青蛙模仿操课件
- 贴墙砖工人安全培训课件
- 说课课件猜字谜
- 吉利EV450车型电动汽车控制系统及检修
- 2024-2025学年七年级生物上册 第一单元第一、二章 单元测试卷(人教版)
- 销售沟通技巧课件企业培训
- AQ 1095-2014 煤矿建设项目安全预评价实施细则(正式版)
- CJJ105-2005 城镇供热管网结构设计规范
- 眼的解剖结构与生理功能课件
- 2024年成都产业投资集团有限公司招聘笔试冲刺题(带答案解析)
- 《风电场并网设计技术规范 第3部分:分散式风电》
- DL-T 572-2021电力变压器运行规程-PDF解密
- 脑死亡判定标准与技术规范
- (高清版)TDT 1055-2019 第三次全国国土调查技术规程
评论
0/150
提交评论