机械毕业设计1702轴向柱塞泵设计.doc

机械毕业设计1702轴向柱塞泵设计

收藏

压缩包内文档预览:(预览前20页/共62页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:551969    类型:共享资源    大小:773KB    格式:ZIP    上传时间:2015-12-05 上传人:QQ28****1120 IP属地:辽宁
6
积分
关 键 词:
机械毕业设计论文
资源描述:
机械毕业设计1702轴向柱塞泵设计,机械毕业设计论文
内容简介:
轴向柱塞泵设计 学生姓名: 学生学号: 院(系): 机电工程学院 年级专业: 指导教师: nts 摘要 摘要 液压泵是向液压系统提供一定流量和压力的油液的动力元件 ,它是每个液压系统中不可缺少的核心元件 ,合理的选择液压泵对于液压系统的能耗提高系统的效率降低噪声改善工作性能和保证系统的可靠工作都十分重要 本设计 对轴向柱塞泵进行了分析 ,主要分析了轴向柱塞泵的分类 ,对其中的结构 ,例如 ,柱塞的结构型式滑靴结构 型式配油盘结构型式 等进行了分析和设计 ,还包括它们的受力分析与计算 .还有对缸体的材料选用以及校核很关键 ;最后对变量机构分类型式也进行了详细的分析 ,比较了它们的优点和缺点 .该设计最后对轴向柱塞泵的优缺点进行了整体的分析 ,对今后的发展也进行了展望 . 关键词 : 柱塞泵 ,液压系统 ,结构型式 ,今后发展 . nts攀枝花学院毕业设计 Abstract Abstract Liquids pressing a pump is the motive component of oil liquid which presses system to provide certain discharge and pressure toward the liquid, it is each core component that the liquid presses the indispensability in the system, reasonable of choice liquids pressing a pump can consume a exaltation the efficiency of the system to lower a Zao voice an improvement work function and assurance system for liquid pressing system of of dependable work all very important This design filled a pump to carry on toward the pillar to the stalk analytical, mainly analyzed stalk to fill the classification of pump toward the pillar, as to its win of structure, for example, the pillar fill of the slippery Xue structure pattern of the structure pattern went together with the oil dish structure patterns etc. to carry on analysis and design, also include their is analyze by dint with calculation.The material which still has a body to the urn chooses in order to and school pit very key;Finally measure an organization classification towards change, the pattern also carried on detailed analysis and compared their advantage and weakness.That design end filled the merit and shortcoming of pump to carry on whole analysis toward the pillar to the stalk and also carried on an outlook to aftertimes development. Keyword: The pillar fills a pump, the liquid presses system, structure pattern, will develop from now on. nts攀枝花学院毕业设计 目录 - 1 - 目 录 摘 要 ABSTRACT 绪论 4 1 直轴式轴向柱塞泵工作原理与性能参数 6 1.1 直轴式轴向柱塞泵工作原理 6 1.2 直轴式轴向柱塞泵主要性能参数 6 1.2.3 排量流量与容积效率 7 1.2.2 扭矩与机械效率 . 8 1.2.3 功率与效率 9 2 直轴式轴向柱塞泵运动学及流量品质分析 10 2.1 柱塞运动学分析 10 2.1.1 柱塞行程 S 11 2.1.2 柱塞运动速度分析 v 12 2.1.3 柱塞运动加速度 a 13 2.2 滑靴运动分析 14 2.3 瞬时流量及脉动品质分析 15 2.3.1 脉动频率 15 2.3.2 脉动率 16 3 柱塞受力分析与设计 17 3.1 柱塞受力分析 17 3.1.1 柱塞底部的液压力bP 17 3.1.2 柱塞惯性力 18 3.1.3 离心反力tP 18 3.1.4 斜盘反力 N 19 3.1.5 柱塞与柱塞腔壁之间的接触应力1p和2p 20 3.1.6 摩擦力1fP和2fP 20 3.2 柱塞设计 21 3.2.1 柱塞结构型式 22 3.2.2 柱塞结构尺寸设计 23 3.2.3 柱塞摩擦副比压 P比功vP验算 23 nts攀枝花学院毕业设计 目录 - 2 - 4 滑靴受力分析与设计 25 4.1 滑靴受力分析 25 4.1.1 分离力 26 4.1.2压紧力yp 27 4.1.3 力平衡方程式 27 4.2 滑靴设计 28 4.2.1 剩余压紧力法 28 4.3 滑靴结构型式与结构尺寸设计 29 4.3.1 滑靴结构型式 29 4.3.2 结构尺寸设计 31 5 配油盘受力分析与设计 32 5.1 配油盘受力分析 32 5.1.1压紧 力yp 33 5.1.2 分离力fp 34 5.2 配油盘设计 35 5.2.1 过渡区设计 35 5.2.2 配油盘主要尺寸确定 37 5.2.3 验算比压 p比功 pv 38 6 缸体受力分析与设计 40 6.1 缸体的稳定性 40 6.2 缸体主要结构尺寸的确定 40 6.2.1 通油孔分布圆半径fR和面积 F 40 6.2.2缸体内外直径1D2D的确定 42 6.2.3 缸体高度 H 43 7 柱塞回程机构设计 44 8 斜盘力矩分析 46 8.1 柱塞液压力矩1M 46 8.2 过渡区闭死液压力矩 46 8.2.1 具有对称正重迭型配油盘 46 8.2.2 零重迭型配油盘 47 8.2.3 带卸荷槽非对称正重迭型配油盘 47 8.3 回程盘中心预压弹簧力矩3M 48 8.4 滑靴偏转时的摩擦力矩4M 48 8.5 柱塞惯性力矩5M 48 nts攀枝花学院毕业设计 目录 - 3 - 8.6 柱塞与柱塞腔的摩擦力矩6M 49 8.7 斜盘支承摩擦力矩7M 49 8.8 斜盘与回程盘回转的转动惯性力矩8M 50 8.9 斜盘自重力矩9M 50 9 变量机构 51 9.1 手动变量机构 51 9.2 手动伺服变量机构 53 9.3 恒功率变量机构 55 9.4 恒流量变量机构 56 结论 57 参考文献 58 致谢 59 nts攀枝花学院毕业设计 绪论 4 绪论 随着工业 技术的不断发展,液压传动也越来越广,而作为液压传动系统心脏的液压泵就显得更加重要了。在容积式液压泵中,惟有柱塞泵是实现高压高速化大流量的一种最理想的结构, 在相同功率情况 下 ,径向往塞泵的径向尺寸大、径向力也大,常用于大扭炬、低转速工况,做为按压马达 使用。而轴向柱塞泵结构紧凑,径向尺寸小,转动惯量小,故转速较高; 另外,轴向柱塞泵易于变量,能用多种方式自动调节流量,流 量大 。由于上述 特点,轴向柱塞泵被广泛使用于工程机械、起重运输、冶金 、船舶等多种领域。航空上,普 遍 用于飞机液压系统、操纵系统及航空发动机燃油系统中 。是飞机上所用的液压泵中最主要的一种型式。 本设计对柱塞泵的结构作了详细的研究,在柱塞泵中有阀配流轴配流端面配流三种配流方式。这些配流方式被广泛应用于柱塞泵中,并对柱塞泵的高压高速化起到了不可估量的作用。可以说没有这些这些配流方式,就没有柱塞泵。但是,由于这些配流方式在柱塞泵中的单一使用,也给柱塞泵带来了一定的不足。设计中对轴向柱塞泵结构中的滑靴作了介绍,滑靴一般分为三种形式;对缸体的尺寸结构等也作了设计;对柱塞的回程结构也有介绍。 柱塞式液压泵是靠柱塞在柱塞腔内的往复运动,改变柱塞腔容积实现吸油和排油的。是容积式液压泵的一种。柱塞式液压泵由于其主要零件柱塞和缸休均为圆柱形,加工方 便 配合精度高,密封性能好,工作压力高而得到广泛的应用。 柱 塞式液压泵种类繁多, 前者柱塞平行于缸体轴线,沿轴向按柱塞运动形式可分为轴向柱塞式和径向往塞式两大类运动,后者柱塞垂直于配油轴,沿径向运动。这两类泵既可做为液压泵用,也可 做 为液压马达用。 泵的内在特性是指包括产品性能、零部件质量、整机装配质量、外观质量等在内的产品固有特性,或者简称之为品质。在这一点上,是目前许多泵生产厂商所关注的也是努力在提高、改进的方面。而实 际上,我们可以发现,有许多的产品在工厂检测符合发至使用单位运行后,往往达不到工厂出厂检测的效果,发生诸如过载、噪声增大,使用达不到要求或寿命降低等等方面的问题;而泵在实际当中所处的运行点或运行特征,我们称之为泵的外在特性或系统特性。 正如科学技术的发展一样,现阶段科技领域中交叉学科、边缘学科越来越丰富,跨学科的共同研究是十分普遍的事情,作为泵产品的技术发展亦是如此。以屏蔽式泵为例,取消泵的轴封问题,必须从电机结构开始,单局限于泵本身是没有办法实现的;解决泵的噪声问题,除解决泵的流态和振动外,同时需要 解决电nts攀枝花学院毕业设计 绪论 5 机风叶的噪声和电磁场的噪声;提高潜水泵的可靠性,必须在潜水电机内加设诸如泄漏保护、过载保护等措施;提高泵的运行效率,须借助于控制技术的运用等等。这些无一不说明要发展泵技术水平,必须从配套的电机、控制技术等方面同时着手,综合考虑,最大限度地提升机电一体化综合水平。 柱塞式液压泵的显著缺点是结构比较复杂,零件制造精度高,成本也高,对油 液 污染敏感。这些给生产、使用和维护带来一定的困难。 nts攀枝花学院毕业设计 1 直轴式轴向柱塞泵工作原理与性能参数 6 1 直轴式轴向柱塞泵工作原理与性能参数 1 1 直轴式轴向柱塞泵工作原理 直轴式轴向柱塞泵 主要结构如图 1.1 所示。柱塞的头部安装有滑靴,滑靴底面始终贴着斜盘平面运动。当缸体带动柱塞旋转时, 由于斜盘平面相对缸体平面( xoy 面 ) 存在一倾斜角 , 迫使柱塞在 柱 塞腔内作直线往复运动。如果缸体按图示 n方向旋 转, 在 180 360 范 围 内,柱塞由下死点 (对应 180 位置 )开始不断伸出,柱塞腔容积不断增大,直至上死点 (对应 0 位置 )止。在这过程中,柱塞腔刚好与配油盘吸油 窗 相通, 油 液被吸人 柱 塞腔内,这是吸油过程。随着缸体继续旋转,在 0 180 范围内,柱塞在斜盘约束下由上死点开始不断进入腔内, 柱塞腔容积不断减小,直至下孔点止。在这过程中, 柱 塞腔刚好与配油盘排油窗相通,油液通过排油窗排出。这就是排油过程。由此可见,缸体每转一跳各个往塞有半周吸油、半 周排 油。如果缸体不断旋转,泵 便 连续地吸油和 排 油。 图 1.1 直轴式轴向柱塞泵工作原理 1.2 直轴式轴向柱塞泵主要性能参数 给定设计参数 最大工作压力 m a x 40P M Pa额定流量 Q =100L/min 最大流量 m a x 2 0 0 / m i nQLnts攀枝花学院毕业设计 1 直轴式轴向柱塞泵工作原理与性能参数 7 额定转速 n=1500r/min 最大转速 m a x 3 0 0 0 / m i nnr1.2.1排量流量与容积效率 轴向柱塞泵排量bq是指缸体旋转一周,全部柱塞腔所排出油液的容积,即 2m a x m a x4b X xq F s Z d s Z= 2( 1 9 . 5 0 . 2 ) ( 1 9 . 5 0 . 2 2 ) 94p 创 创 创 0.84(L) 不计容积损失时,泵的理论流量tbQ为 2 m a x4tb b b x bQ q n d s Z n =0.84 1500 =1260(L) 式中 xF 柱塞横截面积; xd 柱塞外径; maxs 柱塞最大行程; Z 柱塞数; bn 传动轴转速。 泵的理论排量 q 为 1 0 0 0 1 0 0 0 1 0 0 7 0 . 2. 1 5 0 0 0 . 9 5vQq n h = = =( ml/r) 为了避免气蚀现象,在计算理论 排 量 时应按下式作校核计算: 13max. pn q C133000 7 0 . 2 2 0 660 pC?式中pC是常数,对进口无预压力的油泵pC=5400;对进口压力为 5kgf/cm 的油泵pC=9100,这里取pC=9100 故符合要求。 排量是液压泵的主要性能参数之一,是泵几何参数的特征量。相同结构型式的系列泵中,排量越大,作功能力也越大。因此,对液压元件型号命名的标准中明确规定用排量作为主参数来区别同一系列不同规格型号的产品。 nts攀枝花学院毕业设计 1 直轴式轴向柱塞泵工作原理与性能参数 8 从泵的排量公式 24b x fq d D Z tg 中可以看出,柱塞直径zd分布圆直径fD柱塞数 Z 都是泵的固定结构参数,并且当原动机确定之后传动轴转速bn也是不变的量 。要想改变泵输出流量的方向和大小,可以通过改变斜盘倾斜角 来实现。对于直轴式轴向柱塞泵,斜盘最大倾斜角max 15 20 ,该设计是通轴泵,受机构限制,取下限,即 15g O= 。 泵实际输出流量gbQ为 gb tb bQ Q QV=100-3=97( ml/min) 式中bQV为柱塞泵泄漏流量。 轴向柱塞泵的泄漏流量主要由缸体底面与配油盘之间 滑靴与斜盘平面之间及柱塞与柱塞腔之间的油液泄漏产生的。此外,泵吸油不足柱塞腔底部无效容积也造成容积损失。 泵容积效率VB定义为实际输出流量gbQ与理论流量tbQ之比,即 gbVBtbQQ = 97 97%100=轴向柱塞泵容积效率一般为b=0.94 0.98,故符合要求。 1.2.2扭矩与机械效率 不计摩擦损失时,泵的理论扭矩tbM为 2bbtb pqM V= 6 61 2 0 . 8 4 1 0 1 . 6 1 0 ( . )2 Nmp创 =?式中bpV为泵吸 排油腔压力差。 考虑摩擦损失bMV时,实际输出扭矩gbM为 g b tb bM M MV= 6661 . 6 1 0 0 . 2 1 0 1 . 8 1 0 ( . )Nm? 轴向柱塞泵的摩擦损失主要由缸体底面与配油盘之间滑靴与斜盘平面之间柱塞与柱塞腔之间的摩擦副的相对运动以及轴承运动而产生的。 泵的机械效率 定义为理论扭矩tbM与实际输出扭矩gbM之比,即 661 1 . 6 1 0 8 8 . 9 %1 . 8 1 01t b t bmbbg b t b bfbMMMM M MMh = = = = =+?+ VV nts攀枝花学院毕业设计 1 直轴式轴向柱塞泵工作原理与性能参数 9 1.2.3功率与效率 不计 各种损失时,泵的理论功率tbN2tb b tb b g bN p Q n MV = 615002 1 . 8 1 0 2 8 3 ( )60 kwp 创 ? 泵实际的输入功率brN为 122b r b g b b t b mbN n M n M = 61 5 0 0 12 1 . 6 1 0 2 8 2 ( )6 0 0 . 8 8 9 kwp 创创 =泵实际的输出功率bcN为 b c b g b b t b bN p Q p Q gh=VV=3 63 1 . 6 1 0 9 5 4 2 6 7 ( )kw创 ? 定义泵的总 效率 为输出功率bcN与输入功率brN之比,即 12b t b bbcb b m bbr tbmbpQNN Mgghh h hp h= = =V =0 .8 8 9 0 .9 7 0 .8 6? 上式表明,泵总效率为容积效率与机械效率之积。对于轴向柱塞泵,总效率一般为bh=0.85 0.9,上式满足要求。 nts攀枝花学院毕业设计 2 直轴式轴向柱塞泵运动学及流量品质分析 10 2 直轴式轴向柱塞泵运动学及流量品质分析 泵在一定斜盘 倾角下工作时,柱塞一方面与缸体一起 旋转,沿缸体平面做圆周运动,另一方面又相对缸体做往复直线运动。这两个 运动的合成,使柱塞轴线上任一点的运动轨迹是 一个椭圆。此外,柱塞还可能有由于摩擦而产生的相对缸体绕其自身轴线的自转运动,此运动使柱塞的磨损和润滑趋于均匀,是有利的。 2.1 柱塞运动学分析 柱塞运动学分析,主要是研究柱塞相对缸体的往复直线运动。 即分析柱塞与缸体做相对运动时的行程速度和加速度,这种分析是研究泵流量品质和主要零件受力状况的基础。 2.1.1柱塞行程 S 图 2.1为一般带滑靴的轴向柱塞运动分析图。 若斜盘倾斜角为 , 柱塞分布圆半径为fR, 缸体或柱塞旋转角为 a,并以柱塞腔容积最大时的上死点位置为 0 ,则对应于任一旋转角 a 时, 图 2.1 柱塞运动分析 nts攀枝花学院毕业设计 2 直轴式轴向柱塞泵运动学及流量品质分析 11 c o sffh R R a=-所以柱塞行程 S 为 1 ( 1 c o s )s h t g R t ggg= = -当 180a O= 时,可得最大行程maxs为 m a x 2 ffs R tg D tggg=3 9 1 8 0 3 9 ( )t m mO?2.1.2 柱塞运动速度分析 v 将式1 (1 c o s )s h tg R tg 对时间微分可得柱塞运动速度 v为 . s i ns s a ft a td d d R t g ad d du w g= = = 当 90a 及 270 时, sin 1a ,可得最大运动速度max为 m a x 15001 9 . 5 2 . 1 5 8 1 9 ( / )60fR t g t g m m su w g p O= 创 =式中 w 为缸体旋转角速度, atw=。 2.1.3 柱塞运动加速度 a 将 . s i ns s a ft a td d d R t g ad d d 对时间微分可得柱塞运动加速度 a 为 2. c o sa ft a td d da R t g ad d d 当 0a 及 180 时, cos 1, 可得最大运动加速度maxa为 2m a x 15008 1 9 2 1 2 9 ( / )60fa R t g m sw g p骣 = 创 = 桫柱塞运动的行程 s速度 v加速度 a 与缸体转角 a的关系如图 2.2 所示 。 nts攀枝花学院毕业设计 2 直轴式轴向柱塞泵运动学及流量品质分析 12 图 2.2 柱塞运动特征图 2.2 滑靴运动分析 研究滑靴的运动,主要是分析它相对斜盘平面的运动规律,即滑靴中心在斜盘平面 xoy ? 内的运动规律(如图 2.3),其运动轨迹是一个椭圆。椭圆的长短轴分别为 长轴 2 392 4 0 . 4 ( )c o s c o s 1 5fRb m mg O= = =短轴 2 2 3 9 ( )fa R m m=设柱塞在缸体平面上 A 点坐标为 sincosffx R ay R a如果用极坐标表示则为 矢径 2 2 2 2 21 c o shfR x y R t g a 极角 ( c o s c o s )a r c tg a 滑靴在斜盘平面 xoy 内的运动角速度h为 nts攀枝花学院毕业设计 2 直轴式轴向柱塞泵运动学及流量品质分析 13 2 2 2c o sc o s c o s s i nh tdd a aq wgw g= + 由上式可见,滑靴在斜盘平面内是不等角速度运动,当2a 32时,h最大(在短轴位置)为 m a x c o shww g=1500 260 1 6 2 ( / )c o s 1 5 r a d spO= 当 0a 时,h最小(在长轴位置)为 m i n 1500c o s 2 c o s 1 5 1 5 2 ( / )60h r a d sw w g p O= 创 =由结构可知,滑靴中心绕 o 点旋转一周( 2 )的时间等于缸体旋转一周的时间。因此, 其平均旋转角速度等于缸体角速度,即 1500 2 1 5 7 ( / )60ap r a d sw w p= = ?2.3 瞬时流量及脉动品质分析 柱塞运动速度确定之后,单个柱塞的瞬时 流量可写成 2 s i nt i z t f tQ F F R t g a 式中zF为柱塞横截面积, 24zzFd。 泵柱塞数为 9,柱塞角距(相邻柱塞间夹角)为 22 0 . 79Z ,位于排油区的柱塞 数为0Z,那么参与排油的各柱塞瞬时流量为 123s i ns i n ( )s i n ( 2 )t z ft z ft z fQ F R t g aQ F R t g aQ F R t g awgw g qw g q=+ 0s i n ( 1 ) t z fQ F R t g a Z 泵的瞬时流量为 1 2 0t t t tzQ Q Q Q LLnts攀枝花学院毕业设计 2 直轴式轴向柱塞泵运动学及流量品质分析 14 0100s i n ( 1 )1s i n s i n ( )s i nZzftzfF R t g a iZZaZZF R t gZ 由上式可以看出,泵的瞬时流量与缸体转角 a 有关,也与柱塞数有关。 /2/2/2/2图 2.3 奇数柱塞泵瞬时流量 对 于奇数柱塞,排油区的柱塞数为oZ。 当 0 aZ时,取oZ= 1 9 1 522Z +=,由泵的流量公式可得瞬时流量为 c o s 22 s i n2t z fa ZQ F R t gZ 当 2aZZ时,取0 12ZZ ,同样由泵的流 量公式可得瞬时流量为 3c o s22 s i n2t z fa ZQ F R t gZ nts攀枝花学院毕业设计 2 直轴式轴向柱塞泵运动学及流量品质分析 15 当 a=0Z 2Z时,可得瞬时流量的最小值为 m i n12 s i n 2t z fQ F R tgZ 奇数柱塞泵瞬时流量规律见图 2 3 我们常用脉动率 和脉动频率 f表示瞬时流量脉动品质。 定义脉动率 m a x m i ntttpQQQd-= 这样,就可以进行流量脉动品质分析。 2.3.1 脉动频率 当 Z=9,即为奇数时 15002 2 9 4 5 0 ( )60f n Z H z= 创 =2.3.2 脉动率 当 Z=9,即为奇数时 . ( ) 0 . 0 2 6 %2 4 2 9 4 9t g t gZZp p p pd = = ?创利用以上两式计算值,可以 得到以下内容: 表 2.1 柱塞泵流量脉动率 由以上分析可知: ( 1) 随着柱塞数的增加,流量脉动率下降。 ( 2) 相邻柱塞数想比,奇数柱塞泵的脉动率远小于偶数柱塞泵的脉动率。这就是轴向柱塞泵采用奇数柱塞的根本原因。 从 中还可以看出,奇数柱塞中,当 13Z 时 ,脉动率已小于 1%.因此 ,从泵的Z ( %) 6 13.40 8 7.61 10 4.89 12 3.41 14 2.61 16 1.92 nts攀枝花学院毕业设计 2 直轴式轴向柱塞泵运动学及流量品质分析 16 结构考虑 ,轴向柱塞泵的柱塞数常取 Z=7 9 11. 泵瞬时流量是一周期脉动函数 .由于泵内部或系统管路中不可避免地存在有液阻 ,流量的脉动必然要引起 压力脉动 .这些脉动严重影响了输出流量品质 ,使系统工作不稳定 ,当泵 的脉动频率与液压油柱及管路的固有频率相当 ,就产生了谐振的条件 ,谐振时压力脉动可能很高 ,这时系统的构件有极大的潜在破坏性 .在一些极端情况下 ,几分钟之内 管路或附件即可达到疲劳破坏极限 .液压油的流量压力脉动在管路或附件中激励起高频率的机械震动将引起导致管路附件及安装构件的应力 .液压泵的供压管路 ,一般是最容易受到破坏的部位 .以上 ,对飞机液压系统尤其重要 . 在设计液压泵和液压系统 时,要考虑采取措施抑制或吸收压力脉动,避免引起谐振。对于压力脉动 的幅值, 在航空液压标准中有严格的规定,例如航标变量泵通用技术条件( HB5839 83)中规定:在任何情况下,压力脉动均不超过额定出口压力的 10% 。实际上 10% 的指标还是偏大,但由于制造工艺上的原因,压力脉动的指标还不能定的很严格,但降低泵的压力脉动无疑是今后液压技术发展的一种趋势。 nts攀枝花学院毕业设计 3 柱塞受力分析与设计 17 3 柱塞受力分析与设计 柱塞是柱塞泵主要受力零件之一。单个柱塞随缸体旋转一周时,半周吸油一周排油 。柱塞在吸油过程与在排油过程中的受力情况是不一样的。下面主要讨论柱塞在排油过程中的受力分析,而柱塞在吸油过程中的受力情况 在回程盘设计中讨论。 3.1 柱塞受力分析 图 3.1是带有滑靴的柱塞受力分析简图 。 图 3.1 柱塞受力分析 作用在柱塞上的力有: 3.1.1 柱塞底部的液压力bP柱塞位于排油区时,作用于柱塞底部的轴向液压力bP为 2 3 6m a x ( 2 0 1 0 ) 4 0 1 0 1 2 5 6 0 ( )44bxP d p Npp -= 创创 =式中maxP为泵 最大工作 压力。 nts攀枝花学院毕业设计 3 柱塞受力分析与设计 18 3.1.2 柱塞惯性力BP柱塞 相对缸体往复直线运动时,有直线加速度 a,则柱塞轴向惯性力BP为 2 c o s 1 0 1 ( )zB z fGP m a R t g a Ng wg= - = - = -式中zmzG为柱塞和滑靴的总质量。 惯性力BP方向 与加速度 a 的方向相反,随缸体旋转角 a 按余弦 规律变化。当0a 和 180 时,惯性力最大值为 223m a x 0 . 6 1 5 0 01 9 . 5 1 0 2 1 5 2 4 3 ( )1 0 6 0ZBf GP R t g t g Ng w g p-O骣 = 创创 ? 桫 3.1.3 离心反力tP柱塞随缸体绕主轴 作等速圆周运动,有向心加速度ta,产生的离心反力tP通过柱塞质量重心并垂直轴线,是径向力。其值为 2 243 9 0 7 ( )15Zt z t fGP m a R Ng t gw O= = = =3.1.4 斜盘反力 N 斜盘反力通过柱塞球头中心垂直于斜盘平面 ,可以分解为轴向力 P 及径向力0T即 c o s 1 2 5 6 0 c o s 1 5 1 2 1 3 2 ( )s i n 1 2 5 6 0 s i n 1 5 3 2 5 0 ( )P N NT N NggOO= = ?= = ?轴向力 P 与作用于柱塞底部的液压力bP及 其它轴向力相平衡。而径向力 T则对主轴形成负载扭矩,使柱塞受到弯矩作用,产生接触应力,并使缸体产生倾倒力矩。 3.1.5 柱塞与柱塞腔壁之间的 接触应力1p和2p该力是接触应力1p和2p产生的合力。考虑到柱塞与柱塞腔 的径向间隙远小于柱塞直径 及柱塞腔内的接触长度。 因此,由垂直于柱塞腔的径向力 T 和离心力fp引起的接触应力1p和2p可以看成是连续直线分布的应力。 3.1.6 摩擦力1fP和2fPnts攀枝花学院毕业设计 3 柱塞受力分析与设计 19 柱塞与柱塞腔壁之间的摩擦力fp为 12( ) ( 2 0 1 0 0 5 8 2 3 ) 0 . 1 2 5 9 2 . 3 ( )fP P p f N= + = + ?式中 f 为摩擦系数,常取 f =0.05 0.12,这里取 0.1。 分析柱塞受力,应取柱塞在柱塞腔中具有最小接触长度,即柱塞处于上死点时的位置。此时, N1p和2p可以通过如下方程组求得 0y 12s i n 0tN p p p 000zM1202 21 0 2 12c o s 03 3 202bszzttN f p f p p pll ldp l l p l f pdf p p lg - - - - =骣 骣- - + - - - 桫桫+ - =式中 0l 柱塞 最小接触长度 ,根据经验0l=(1.5 2)d: ,这里取0l=2d =78mm; l 柱塞名义长度 ,根据经验 l = (2.7 3.7)d: ,这里取0l=3d =117mm; tl 柱塞重心至球心距离 ,tl=0l 2 7 8 5 7 . 6 2 0 . 4l m m- = - =以上虽有三个方程,但其中2l也是未知数,需要增加一个方程才能求解。 根据相似原理有 1 m ax 0 02 m ax 2p l lpl 又有 1 1 m a x 0 21 ()2p p l l2 m a x 212 zzp p l d所以 2021222()llppl 将式 2021222()llppl 代入 12s i n 0tN p p p 求解接触长度 2l 。为简化计算,力矩方程中离心力tP相对很小可以忽略,得 2 20 0 0206 4 3 6 7 8 1 1 7 4 7 8 3 0 . 1 3 9 7 85 7 . 6 ( )1 2 6 6 1 2 1 1 7 6 0 . 1 3 9 6 7 8zzl l l f d ll m ml f d l- 创 -? 创 ?= = =- - ? 创 -?nts攀枝花学院毕业设计 3 柱塞受力分析与设计 20 将式 2021 222()llppl 代入12c o s 0bsN f p f p p p 可得 120221( s i n ) 1() 1txP N plllg轾犏犏犏= + +犏 -犏 -犏臌3 1( 5 7 1 0 s i n 1 5 1 2 2 . 5 ) 1 2 0 . 1 ( )2 . 5 5 7 kNO 骣 = 创 + ? = 桫32 22022s i n 5 7 1 0 s i n 1 5 1 2 2 . 5 5 8 2 3 ( )( ) ( 7 8 5 7 . 6 ) 11117txNPPNlllg O+ 创 += = =- -将以上两式代入02 21 0 2 1 2 03 3 2 2zz ttll l d dp l l p l f p f p p l骣 骣- - + - - - + - = 桫桫可得 1 2 5 6 0 1 0 1 0 . 1 1 . 7 8 1 2 2 . 55 7 ( )c o s s i n c o s 1 5 0 . 1 1 . 7 8 s i n 1 5b B tP P f PN K Nf jg j g OO+ + 创= = =- - ?式中 为结构参数。 2 202222022() ( 7 8 5 7 . 6 )11117 1 . 7 8( ) ( 7 8 5 7 . 6 ) 11117xxllllllj- -+= = =- -3.2 柱塞设计 3.2.1 柱塞结构型式 轴向柱塞泵均采用圆柱形柱塞。根据柱塞头部结构,可有以下三种形式: 点接触式柱塞 ,如图 3.2( a)所示。这种柱塞头部为一球面,与斜盘为点接触,其零件简单,加工方便。但由于接触应力大,柱塞头部容易磨损剥落和边缘掉块,不能承受过高 的工作压力,寿命较低。这种点接触式柱塞在早期泵中可见,现在很少有应用。 线接触式柱塞,如图 3.2( b)所示。柱塞头部安装有摆动头,摆动头下 部可绕柱塞球窝中心摆动。摆动头上部是球面或平面与斜盘或面接触,以降低接触应力,提高泵工作压。摆动头与斜盘的接触面之间靠壳体腔的油液润滑,相当于普通滑动轴承,其 pv 值必须限制在规定的范围内。 nts攀枝花学院毕业设计 3 柱塞受力分析与设计 21 带滑靴的柱塞,如图 3.2( c)所示。柱塞头部同样装有一个摆动头,称滑靴,可以绕柱塞球头中心摆动。滑靴与斜盘间为面接触,接触应力小,能承受较高的工作压力。高压油液还可以通过柱塞中心孔及滑靴中心孔,沿滑靴平面泄漏,保持与斜盘之间有一层油膜润滑,从而减少了摩擦和磨损,使寿命大大 提高。目前大多采用这种轴向柱塞泵。 ( a) ( b ) ( c ) 图 3.2 柱塞结构型式 图 3.3 封闭薄壁柱塞 从图 3.2 可见,三种型式的柱塞大多做成空心结构,以减轻柱塞重量,减小柱塞运动时的惯性力。采用空心结构还可以利用柱塞底部高压油液使柱塞局部扩张变形补偿柱塞与柱塞腔之间的间隙,取得良好的密封效果。空心柱塞内还可以安放回程弹簧,使柱塞在吸油区复位。 但空心 结构无疑增加了柱塞在吸排油过程中的剩余无效容积。在高压泵中,由于液体可压缩性能的影响,无效容积会降低泵容积效率,增加泵的压力脉动,影响调节过程的动态品质。 因此,采用何种型式的柱塞要从工况条件 性能要求整体结构等多方面权衡利弊,合理选择。 航空液压泵通常采用图 3.3 所式的封闭壁结构。这种结构不仅有足够的刚度,而且重量减轻 10% 20%。剩余无效容积也没有增加。但这种结构工艺比较复杂,nts攀枝花学院毕业设计 3 柱塞受力分析与设计 22 需要用电子束焊接。 3.2.2柱塞结构尺寸设计 柱塞直径Zd及柱塞分布塞直 径fD柱塞直径Zd 柱塞分布塞直径fD和柱塞数 Z 都是互相关联的。根据统计资料,在缸体上各柱塞孔直径Zd所占的弧长约为分布圆周长fD的 75%,即 0.75ZfZdD 由此可得 9 3 . 8 20 . 7 5 0 . 7 5fxD Zmd pp= ? =式中 m 为结构参数。 m 随柱塞数 Z 而定。对于轴向柱塞泵,其 m 值如表 3.1 所示。 Z 7 9 11
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机械毕业设计1702轴向柱塞泵设计
链接地址:https://www.renrendoc.com/p-551969.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!