折射定理的发展过程.doc_第1页
折射定理的发展过程.doc_第2页
折射定理的发展过程.doc_第3页
折射定理的发展过程.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光的折射定律一、托勒密对折射现象的实验研究公元二世纪,希腊人托勒密(90168)通过实验研究了光的折射现象1实验设计:托勒密的实验设计如图所示:在一个圆盘上装上两把能绕盘中心S旋转的中间可以活动的尺子将圆盘面垂直立于水中,水面到达圆心处2实验方法:实验时转动两把尺子使之分别与入射光线和折射光线重合然后把圆盘取出,分别按照尺的位置测出入射角和折射角3实验结果:托勒密通过上述的方法测得从空气中射入水中的光线折射时的一系列对应值为:4数据分析:托勒密通过分析以上数据,得出结论:折射角和入射角是成正比关系今天我们知道这个结论是不正确的,它只有在入射角很小的情况下才近似成立5留给我们的沉思:从托勒密的实验设计实验方法到实验数据的收集可以说是完全正确的他的实验结果也是相当精确的,与现代值几乎没有多大的差别但是托勒密可惜的是未能从正确的数据中发现正确的规律,从这里可看出对实验数据正确处理,加上正确理论的指导在发现规律中的重要性托勒密是第一个用实验方法测定入射角和折射角的人,他曾求出具有单位半径的圆中弧与所对应的弦长数字,并巧妙地用数学方法编制了表(相当于现代的正弦三角函数表),他当时对折射角和入射角的测量是相当精确的,如果他当时把关于光折射的实验数据与他所编制的这份表作一比较的话,他就会不难发现入射角的正弦与折射角的正弦之比对给定的两种介质来说是一个常数,这样他就会发现折射定律,然而他却没有这样做,以致错过了一次发现的机会二、开普勒对折射规律的修正德国人开普勒在汇集前人光学知识的基础上,断定托勒密关于折射规律的结论是不正确的于是他开始便想通过实验发现折射定律,但实验最后没有成功他便转向从理论上加以探索他得出的折射定律是:折射角由两部分组成,一部分正比于入射角,另一部分正比于入射角的正割;只有在入射角小于30时,入射角和折射角成正比的关系才成立,显然,开普勒关于折射定律的研究和修正比托勒密前进了一步但还没能给出正确的折射定律三、斯涅耳发现折射定律荷兰数学家斯涅耳(15911626)于1620年前后,通过实验确立了开普勒想发现而没有能够发现的折射定律他注意研究了水中的物体看起来象飘浮的现象,做了如下实验:当在空气中的0点观察水中的A点时,犹如在B点一样,如图(A)所示斯涅耳发现,对于任意入射角存在以下关系(B)图所示斯涅耳没有用理论推导,而是用实验又验证了它斯涅耳对折射定律作了如下表述:在不相同的介质里,入射角和折射角的余割之比总是保持相同的值由于余割和正弦成反比,所以这个叙述等价于现代折射定律的表达式四、笛卡儿进一步完善了光的折射定律法国人笛卡儿,他以媒质中球的运动作类比,试图说明折射定律如图所示,假设球在媒质中运动,当进入媒质时,球速的水平分量不变,垂直部分增大,中的光速变成中光速的u倍其结果球在媒质内部偏转,而所需时间仅为通过媒质中所需时间的1/u因此根据几何关系,可得在这段时间内,球在水平方向前进的距离BE等于CB/u所以式中i为入射角,r为折射角笛卡儿第一次给出了折射定律的现代表述形式五、费马对折射定律的发展与理论论证法国人费马(16011665)从理论上得到费马原理,并用演绎方法从费马原理中推导出折射定律1费马从理论上得到费马原理费马从理论上推导出:光沿着光程为极值的路径传播设某空间介质的折射率连续变化,光由A点传播到B点就必循一曲线,如图所示它的总光程为根据变分法原理,光程为极值的条件为此式即为费马原理的数学表达式由费马原理可以推导出反射定律和折射定律,并可证明它们的光程为极值2费马用演绎方法导出折射定律费马在前人发现折射定律的基础上对光的折射定律又有了新的发展费马认为,导出折射定律可以采取另一种截然不同的思考方法他假定不同媒质对光的传播表现出不同的阻力,他首先指出,光在不同媒质中传播时,所走路程取极值,即遵从费马原理即是说,光从空间的一点到另一点,是沿着光程为极值(最小、最大或常量)的路程传播的借助于光程这个概念可将光在媒质中所走过的路程折算为光在真空中通过的路程,这样便于比较光在不同媒质中所走路程的长短1661年费马运用费马原理成功地导出了折射定律六、光的折射定律的现代表述折射定律是几何光学的基本定律之一是在光的折射过程中,确定折射光线与入射光线之间关系的定律当光从一种介质射向另一种介质的平滑界面时,一部分光被界面反射,另一部分光透过界面在另一种介质中折射,折射光线服从折射定律:折射光线AB位于入射光线SA和法线AN所决定的平面(称为入射面)内,折射光和入射光分别在法线的两侧,入射角i与折射角r有如下关系式:式中n21是一个与角度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论