



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3.2二项式定理-杨辉三角学习目标:1掌握二项式定理和二项式系数的性质。2.能灵活运用展开式、通项公式、二项式系数的性质解题 学习重点:如何灵活运用展开式、通项公式、二项式系数的性质解题学习难点:如何灵活运用展开式、通项公式、二项式系数的性质解题授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入:1二项式定理及其特例:(1),(2).2二项展开式的通项公式: 3求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性 41二项式系数表(杨辉三角)展开式的二项式系数,当依次取时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和5二项式系数的性质:展开式的二项式系数是,可以看成以为自变量的函数,定义域是,例当时,其图象是个孤立的点(如图)(1)对称性与首末两端“等距离”的两个二项式系数相等()直线是图象的对称轴(2)增减性与最大值:当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值(3)各二项式系数和:,令,则 二、讲解范例:例1 设,当时,求的值解:令得:,点评:对于,令即可得各项系数的和的值;令即,可得奇数项系数和与偶数项和的关系例2求证:证(法一)倒序相加:设 又 , 由+得:,即(法二):左边各组合数的通项为, 例3已知:的展开式中,各项系数和比它的二项式系数和大(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项解:令,则展开式中各项系数和为,又展开式中二项式系数和为,(1),展开式共项,二项式系数最大的项为第三、四两项,(2)设展开式中第项系数最大,则,即展开式中第项系数最大,例4已知,求证:当为偶数时,能被整除分析:由二项式定理的逆用化简,再把变形,化为含有因数的多项式 ,为偶数,设(), () ,当=时,显然能被整除,当时,()式能被整除,所以,当为偶数时,能被整除高考资源网三、课堂练习:1展开式中的系数为 ,各项系数之和为 2多项式()的展开式中,的系数为 3若二项式()的展开式中含有常数项,则的最小值为( ) a.4 b.5 c.6 d.84某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 ( ) a.低于5 b.在56之间 c.在68之间 d.在8以上5在的展开式中,奇数项之和为,偶数项之和为,则等于( )a.0 b. c. d.6求和:7求证:当且时,8求的展开式中系数最大的项 答案:1. 45, 0 2. 0 提示:3. b 4. c 5. d 6. 7. (略) 8. 四、小结 :二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用 高考资源网五、课后作业:1已知展开式中的各项系数的和等于的展开式的常数项,而 展开式的系数的最大的项等于,求的值答案:2设求: 答案:; 3求值:答案:4设,试求的展开式中:(1)所有项的系数和;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公务员(国考)之行政职业能力测验通关题库(附答案)
- 2025年公文写作考试试题及答案解析
- 2025年公司安全培训考试试题附参考答案
- 会计个人考试题库及答案
- 四川省仁寿县二中、华兴中学2026届化学高二第一学期期末综合测试模拟试题含答案
- 社群运营服务费协议
- 2025年聚碳酸酯(PC)及合金项目建议书
- 2025年驱绦药项目发展计划
- 2025年关于患者投诉饭菜难吃整改措施
- 2025年无汞可充电碱锰电池项目合作计划书
- 对新员工保密基本培训
- 2025届湖北省部分学校新高三新起点暑期效果联合质量检测数学试卷(解析版)
- GB/T 6553-2024严酷环境条件下使用的电气绝缘材料评定耐电痕化和蚀损的试验方法
- 2024年苏教版四年级数学上册全册教案
- 2024新科普版英语七年级上单词默写表
- 金融行业高质量发展专题研究报告
- 2024年首届全国“红旗杯”班组长大赛考试题库(单选、多选、判断题)
- 知识题库-人社练兵比武竞赛测试题及答案(五)
- 五年级上册科学青岛版全册教案
- 出入境证件承诺书
- 合理膳食 均衡营养课件
评论
0/150
提交评论