同济线性代数第五版答案.doc_第1页
同济线性代数第五版答案.doc_第2页
同济线性代数第五版答案.doc_第3页
同济线性代数第五版答案.doc_第4页
同济线性代数第五版答案.doc_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1); 解 =2(-4)3+0(-1)(-1)+118 -013-2(-1)8-1(-4)(-1) =-24+8+16-4=-4. (3); 解 =bc2+ca2+ab2-ac2-ba2-cb2 =(a-b)(b-c)(c-a). 4. 计算下列各行列式: (1); 解 . (2); 解 . (3); 解 . (4). 解 =abcd+ab+cd+ad+1. 6. 证明: (1)=(a-b)3; 证明 =(a-b)3 . (2); 证明 . 8. 计算下列各行列式(Dk为k阶行列式): (1), 其中对角线上元素都是a, 未写出的元素都是0; 解 (按第n行展开) =an-an-2=an-2(a2-1). (2); 解 将第一行乘(-1)分别加到其余各行, 得 , 再将各列都加到第一列上, 得 =x+(n-1)a(x-a)n第二章矩阵及其运算1. 计算下列乘积:(5); 解 =(a11x1+a12x2+a13x3 a12x1+a22x2+a23x3 a13x1+a23x2+a33x3) . 2. 设, , 求3AB-2A及ATB. 解 , . 3. 已知两个线性变换 , , 求从z1, z2, z3到x1, x2, x3的线性变换. 解 由已知 , 所以有. 4. 设, , 问: (1)AB=BA吗? 解 ABBA. 因为, , 所以ABBA. (3)(A+B)(A-B)=A2-B2吗? 解 (A+B)(A-B)A2-B2. 因为, , , 而 , 故(A+B)(A-B)A2-B2. 5. 举反列说明下列命题是错误的: (1)若A2=0, 则A=0; 解 取, 则A2=0, 但A0. (2)若A2=A, 则A=0或A=E; 解 取, 则A2=A, 但A0且AE. (3)若AX=AY, 且A0, 则X=Y . 解 取 , , , 则AX=AY, 且A0, 但XY .7. 设, 求Ak . 解 首先观察 , , , , , . 用数学归纳法证明: 当k=2时, 显然成立. 假设k时成立,则k+1时, , 由数学归纳法原理知: . 8. 设A, B为n阶矩阵,且A为对称矩阵,证明BTAB也是对称矩阵. 证明 因为AT=A, 所以 (BTAB)T=BT(BTA)T=BTATB=BTAB, 从而BTAB是对称矩阵. 11. 求下列矩阵的逆矩阵: (1); 解 . |A|=1, 故A-1存在. 因为 , 故 . (3); 解 . |A|=20, 故A-1存在. 因为 , 所以 . (4)(a1a2 an 0) . 解 , 由对角矩阵的性质知 . 12. 利用逆矩阵解下列线性方程组: (1); 解 方程组可表示为 , 故 , 从而有 . 19.设P-1AP=L, 其中, , 求A11. 解 由P-1AP=L, 得A=PLP-1, 所以A11= A=PL11P-1. |P|=3, , , 而 , 故 .20. 设AP=PL, 其中, , 求j(A)=A8(5E-6A+A2). 解 j(L)=L8(5E-6L+L2) =diag(1,1,58)diag(5,5,5)-diag(-6,6,30)+diag(1,1,25) =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). j(A)=Pj(L)P-1 . 21. 设Ak=O (k为正整数), 证明(E-A)-1=E+A+A2+ +Ak-1. 证明 因为Ak=O , 所以E-Ak=E. 又因为 E-Ak=(E-A)(E+A+A2+ +Ak-1), 所以 (E-A)(E+A+A2+ +Ak-1)=E, 由定理2推论知(E-A)可逆, 且 (E-A)-1=E+A+A2+ +Ak-1. 证明 一方面, 有E=(E-A)-1(E-A). 另一方面, 由Ak=O, 有 E=(E-A)+(A-A2)+A2- -Ak-1+(Ak-1-Ak) =(E+A+A2+ +A k-1)(E-A), 故 (E-A)-1(E-A)=(E+A+A2+ +Ak-1)(E-A),两端同时右乘(E-A)-1, 就有 (E-A)-1(E-A)=E+A+A2+ +Ak-1. 22. 设方阵A满足A2-A-2E=O, 证明A及A+2E都可逆, 并求A-1及(A+2E)-1. 证明 由A2-A-2E=O得 A2-A=2E, 即A(A-E)=2E, 或 , 由定理2推论知A可逆, 且. 由A2-A-2E=O得 A2-A-6E=-4E, 即(A+2E)(A-3E)=-4E, 或 由定理2推论知(A+2E)可逆, 且. 证明 由A2-A-2E=O得A2-A=2E, 两端同时取行列式得 |A2-A|=2, 即 |A|A-E|=2, 故 |A|0, 所以A可逆, 而A+2E=A2, |A+2E|=|A2|=|A|20, 故A+2E也可逆.由 A2-A-2E=O A(A-E)=2E A-1A(A-E)=2A-1E, 又由 A2-A-2E=O(A+2E)A-3(A+2E)=-4E (A+2E)(A-3E)=-4 E, 所以 (A+2E)-1(A+2E)(A-3E)=-4(A+2 E)-1, . 第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵: (1); 解 (下一步: r2+(-2)r1, r3+(-3)r1. ) (下一步: r2(-1), r3(-2). ) (下一步: r3-r2. ) (下一步: r33. ) (下一步: r2+3r3. ) (下一步: r1+(-2)r2, r1+r3. ) . (3); 解 (下一步: r2-3r1, r3-2r1, r4-3r1. ) (下一步: r2(-4), r3(-3) , r4(-5). ) (下一步: r1-3r2, r3-r2, r4-r2. ) . 3. 已知两个线性变换 , , 求从z1, z2, z3到x1, x2, x3的线性变换. 解 由已知 , 所以有. 4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵: (1); 解 故逆矩阵为. (2). 解 故逆矩阵为. 5. (2)设, , 求X使XA=B. 解 考虑ATXT=BT. 因为 , 所以 , 从而 . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0). 解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵: ,此矩阵的秩为4, 其第2行和第3行是已知向量. 12. 设, 问k为何值, 可使 (1)R(A)=1; (2)R(A)=2; (3)R(A)=3. 解 . (1)当k=1时, R(A)=1; (2)当k=-2且k1时, R(A)=2; (3)当k1且k-2时, R(A)=3. P106/1.已知向量组 A: a1=(0, 1, 2, 3)T, a2=(3, 0, 1, 2)T, a3=(2, 3, 0, 1)T; B: b1=(2, 1, 1, 2)T, b2=(0, -2, 1, 1)T, b3=(4, 4, 1, 3)T, 证明B组能由A组线性表示, 但A组不能由B组线性表示. 证明 由 知R(A)=R(A, B)=3, 所以B组能由A组线性表示. 由 知R(B)=2. 因为R(B)R(B, A), 所以A组不能由B组线性表示.4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T, (2, 1, 0)T, (1, 4, 1)T; (2) (2, 3, 0)T, (-1, 4, 0)T, (0, 0, 2)T. 解 (1)以所给向量为列向量的矩阵记为A. 因为 , 所以R(A)=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B. 因为 , 所以R(B)=3等于向量的个数, 从而所给向量组线性相无关.5. 问a取什么值时下列向量组线性相关? a1=(a, 1, 1)T, a2=(1, a, -1)T, a3=(1, -1, a)T. 解 以所给向量为列向量的矩阵记为A. 由 知, 当a=-1、0、1时, R(A)3, 此时向量组线性相关.9.设b1=a1+a2, b2=a2+a3, b3=a3+a4, b4=a4+a1, 证明向量组b1, b2, b3, b4线性相关. 证明 由已知条件得 a1=b1-a2, a2=b2-a3, a3=b3-a4, a4=b4-a1,于是 a1 =b1-b2+a3 =b1-b2+b3-a4 =b1-b2+b3-b4+a1,从而 b1-b2+b3-b4=0, 这说明向量组b1, b2, b3, b4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组: (1)a1=(1, 2, -1, 4)T, a2=(9, 100, 10, 4)T, a3=(-2, -4, 2, -8)T; 解由 , 知R(a1, a2, a3)=2. 因为向量a1与a2的分量不成比例, 故a1, a2线性无关, 所以a1, a2是一个最大无关组. 12.利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1); 解 因为,所以第1、2、3列构成一个最大无关组. (2). 解 因为,所以第1、2、3列构成一个最大无关组.13. 设向量组(a, 3, 1)T, (2, b, 3)T, (1, 2, 1)T, (2, 3, 1)T的秩为2, 求a, b. 解 设a1=(a, 3, 1)T, a2=(2, b, 3)T, a3=(1, 2, 1)T, a4=(2, 3, 1)T. 因为, 而R(a1, a2, a3, a4)=2, 所以a=2, b=5. 20.求下列齐次线性方程组的基础解系: (1); 解对系数矩阵进行初等行变换, 有 , 于是得 . 取(x3, x4)T=(4, 0)T, 得(x1, x2)T=(-16, 3)T; 取(x3, x4)T=(0, 4)T, 得(x1, x2)T=(0, 1)T. 因此方程组的基础解系为 x1=(-16, 3, 4, 0)T, x2=(0, 1, 0, 4)T. (2). 解 对系数矩阵进行初等行变换, 有 , 于是得 . 取(x3, x4)T=(19, 0)T, 得(x1, x2)T=(-2, 14)T; 取(x3, x4)T=(0, 19)T, 得(x1, x2)T=(1, 7)T. 因此方程组的基础解系为 x1=(-2, 14, 19, 0)T, x2=(1, 7, 0, 19)T. 26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系: (1); 解 对增广矩阵进行初等行变换, 有. 与所给方程组同解的方程为. 当x3=0时, 得所给方程组的一个解h=(-8, 13, 0, 2)T. 与对应的齐次方程组同解的方程为. 当x3=1时, 得对应的齐次方程组的基础解系x=(-1, 1, 1, 0)T. (2). 解 对增广矩阵进行初等行变换, 有 . 与所给方程组同解的方程为. 当x3=x4=0时, 得所给方程组的一个解h=(1, -2, 0, 0)T. 与对应的齐次方程组同解的方程为. 分别取(x3, x4)T=(1, 0)T, (0, 1)T, 得对应的齐次方程组的基础解系x1=(-9, 1, 7, 0)T. x2=(1, -1, 0, 2)T. 第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1); 解 根据施密特正交化方法, , , . (2). 解 根据施密特正交化方法, , , . 2. 下列矩阵是不是正交阵: (1); 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2). 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x为n维列向量, xTx=1, 令H=E-2xxT, 证明H是对称的正交阵. 证明 因为 HT=(E-2xxT)T=E-2(xxT)T=E-2(xxT)T =E-2(xT)TxT=E-2xxT, 所以H是对称矩阵. 因为 HTH=HH=(E-2xxT)(E-2xxT) =E-2xxT-2xxT+(2xxT)(2xxT) =E-4xxT+4x(xTx)xT =E-4xxT+4xxT =E, 所以H是正交矩阵. 4. 设A与B都是n阶正交阵, 证明AB也是正交阵. 证明 因为A, B是n阶正交阵, 故A-1=AT, B-1=BT, (AB)T(AB)=BTATAB=B-1A-1AB=E,故AB也是正交阵. 5. 求下列矩阵的特征值和特征向量: (1); 解 , 故A的特征值为l=-1(三重). 对于特征值l=-1, 由,得方程(A+E)x=0的基础解系p1=(1, 1, -1)T, 向量p1就是对应于特征值l=-1的特征值向量. (2); 解 , 故A的特征值为l1=0, l2=-1, l3=9. 对于特征值l1=0, 由,得方程Ax=0的基础解系p1=(-1, -1, 1)T, 向量p1是对应于特征值l1=0的特征值向量. 对于特征值l2=-1, 由,得方程(A+E)x=0的基础解系p2=(-1, 1, 0)T, 向量p2就是对应于特征值l2=-1的特征值向量. 对于特征值l3=9, 由,得方程(A-9E)x=0的基础解系p3=(1/2, 1/2, 1)T, 向量p3就是对应于特征值l3=9的特征值向量. (3). 解 , 故A的特征值为l1=l2=-1, l3=l4=1. 对于特征值l1=l2=-1, 由,得方程(A+E)x=0的基础解系p1=(1, 0, 0, -1)T, p2=(0, 1, -1, 0)T, 向量p1和p2是对应于特征值l1=l2=-1的线性无关特征值向量. 对于特征值l3=l4=1, 由,得方程(A-E)x=0的基础解系p3=(1, 0, 0, 1)T, p4=(0, 1, 1, 0)T, 向量p3和p4是对应于特征值l3=l4=1的线性无关特征值向量. 6. 设A为n阶矩阵, 证明AT与A的特征值相同. 证明 因为|AT-lE|=|(A-lE)T|=|A-lE|T=|A-lE|,所以AT与A的特征多项式相同, 从而AT与A的特征值相同. 7. 设n阶矩阵A、B满足R(A)+R(B)n, 证明A与B有公共的特征值, 有公共的特征向量. 证明 设R(A)=r, R(B)=t, 则r+tn, 故a1, a2, , an-r, b1, b2, , bn-t必线性相关. 于是有不全为0的数k1, k2, , kn-r, l1, l2, , ln-t, 使k1a1+k2a2+ +kn-ran-r+l1b1+l2b2+ +ln-rbn-r=0.记 g=k1a1+k2a2+ +kn-ran-r=-(l1b1+l2b2+ +ln-rbn-r), 则k1, k2, , kn-r不全为0, 否则l1, l2, , ln-t不全为0, 而l1b1+l2b2+ +ln-rbn-r=0, 与b1, b2, , bn-t线性无关相矛盾. 因此, g0, g是A的也是B的关于l=0的特征向量, 所以A与B有公共的特征值, 有公共的特征向量. 8. 设A2-3A+2E=O, 证明A的特征值只能取1或2. 证明 设l是A的任意一个特征值, x是A的对应于l的特征向量, 则 (A2-3A+2E)x=l2x-3lx+2x=(l2-3l+2)x=0. 因为x0, 所以l2-3l+2=0, 即l是方程l2-3l+2=0的根, 也就是说l=1或l=2. 9. 设A为正交阵, 且|A|=-1, 证明l=-1是A的特征值. 证明 因为A为正交矩阵, 所以A的特征值为-1或1. 因为|A|等于所有特征值之积, 又|A|=-1, 所以必有奇数个特征值为-1, 即l=-1是A的特征值. 10. 设l0是m阶矩阵AmnBnm的特征值, 证明l也是n阶矩阵BA的特征值. 证明 设x是AB的对应于l0的特征向量, 则有 (AB)x=lx, 于是 B(AB)x=B(lx), 或 BA(B x)=l(Bx), 从而l是BA的特征值, 且Bx是BA的对应于l的特征向量. 11. 已知3阶矩阵A的特征值为1, 2, 3, 求|A3-5A2+7A|. 解 令j(l)=l3-5l2+7l, 则j(1)=3, j(2)=2, j(3)=3是j(A)的特征值, 故 |A3-5A2+7A|=|j(A)|=j(1)j(2)j(3)=323=18. 12. 已知3阶矩阵A的特征值为1, 2, -3, 求|A*+3A+2E|. 解 因为|A|=12(-3)=-60, 所以A可逆, 故 A*=|A|A-1=-6A-1, A*+3A+2E=-6A-1+3A+2E. 令j(l)=-6l-1+3l2+2, 则j(1)=-1, j(2)=5, j(-3)=-5是j(A)的特征值, 故 |A*+3A+2E|=|-6A-1+3A+2E|=|j(A)| =j(1)j(2)j(-3)=-15(-5)=25. 13. 设A、B都是n阶矩阵, 且A可逆, 证明AB与BA相似. 证明 取P=A, 则P-1ABP=A-1ABA=BA,即AB与BA相似. 14. 设矩阵可相似对角化, 求x. 解 由,得A的特征值为l1=6, l2=l3=1. 因为A可相似对角化, 所以对于l2=l3=1, 齐次线性方程组(A-E)x=0有两个线性无关的解, 因此R(A-E)=1. 由知当x=3时R(A-E)=1, 即x=3为所求. 15. 已知p=(1, 1, -1)T是矩阵的一个特征向量. (1)求参数a, b及特征向量p所对应的特征值; 解 设l是特征向量p所对应的特征值, 则 (A-lE)p=0, 即, 解之得l=-1, a=-3, b=0. (2)问A能不能相似对角化?并说明理由. 解 由,得A的特征值为l1=l2=l3=1. 由知R(A-E)=2, 所以齐次线性方程组(A-E)x=0的基础解系只有一个解向量. 因此A不能相似对角化. 16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵: (1); 解 将所给矩阵记为A. 由=(1-l)(l-4)(l+2),得矩阵A的特征值为l1=-2, l2=1, l3=4. 对于l1=-2, 解方程(A+2E)x=0, 即,得特征向量(1, 2, 2)T , 单位化得. 对于l2=1, 解方程(A-E)x=0, 即, 得特征向量(2, 1, -2)T , 单位化得. 对于l3=4, 解方程(A-4E)x=0, 即,得特征向量(2, -2, 1)T , 单位化得. 于是有正交阵P=(p1, p2, p3), 使P-1AP=diag(-2, 1, 4). (2). 解 将所给矩阵记为A. 由=-(l-1)2(l-10),得矩阵A的特征值为l1=l2=1, l3=10. 对于l1=l2=1, 解方程(A-E)x=0, 即,得线性无关特征向量(-2, 1, 0)T和(2, 0, 1)T , 将它们正交化、单位化得 , . 对于l3=10, 解方程(A-10E)x=0, 即,得特征向量(-1, -2, 2)T , 单位化得. 于是有正交阵P=(p1, p2, p3), 使P-1AP=diag(1, 1, 10). 17. 设矩阵与相似, 求x, y; 并求一个正交阵P, 使P-1AP=L. 解 已知相似矩阵有相同的特征值, 显然l=5, l=-4, l=y是L的特征值, 故它们也是A的特征值. 因为l=-4是A的特征值, 所以,解之得x=4. 已知相似矩阵的行列式相同, 因为, ,所以-20y=-100, y=5. 对于l=5, 解方程(A-5E)x=0, 得两个线性无关的特征向量(1, 0, -1)T, (1, -2, 0)T. 将它们正交化、单位化得, . 对于l=-4, 解方程(A+4E)x=0, 得特征向量(2, 1, 2)T, 单位化得. 于是有正交矩阵, 使P-1AP=L. 18. 设3阶方阵A的特征值为l1=2, l2=-2, l3=1; 对应的特征向量依次为p1=(0, 1, 1)T, p2=(1, 1, 1)T, p3=(1, 1, 0)T, 求A. 解 令P=(p1, p2, p3), 则P-1AP=diag(2, -2, 1)=L, A=PLP-1. 因为,所以 . 19. 设3阶对称阵A的特征值为l1=1, l2=-1, l3=0; 对应l1、l2的特征向量依次为p1=(1, 2, 2)T, p2=(2, 1, -2)T, 求A. 解 设, 则Ap1=2p1, Ap2=-2p2, 即, -. -再由特征值的性质, 有x1+x4+x6=l1+l2+l3=0. -由解得 , , , , .令x6=0, 得, x2=0, , , . 因此 . 20. 设3阶对称矩阵A的特征值l1=6, l2=3, l3=3, 与特征值l1=6对应的特征向量为p1=(1, 1, 1)T, 求A. 解 设. 因为l1=6对应的特征向量为p1=(1, 1, 1)T, 所以有, 即 -. l2=l3=3是A的二重特征值, 根据实对称矩阵的性质定理知R(A-3E)=1. 利用可推出. 因为R(A-3E)=1, 所以x2=x4-3=x5且x3=x5=x6-3, 解之得x2=x3=x5=1, x1=x4=x6=4.因此 . 21. 设a=(a1, a2, , an)T , a10, A=aaT. (1)证明l=0是A的n-1重特征值; 证明 设l是A的任意一个特征值, x是A的对应于l的特征向量, 则有 Ax=lx, l2x=A2x=aaTaaTx=aTaAx=laTax, 于是可得l2=laTa, 从而l=0或l=aTa. 设l1, l2, , ln是A的所有特征值, 因为A=aaT的主对角线性上的元素为a12, a22, , an2, 所以a12+a22+ +an2=aTa=l1+l2+ +ln,这说明在l1, l2, , ln中有且只有一个等于aTa, 而其余n-1个全为0, 即l=0是A的n-1重特征值. (2)求A的非零特征值及n个线性无关的特征向量. 解 设l1=aTa, l2= =ln=0. 因为Aa=aaTa=(aTa)a=l1a, 所以p1=a是对应于l1=aTa的特征向量. 对于l2= =ln=0, 解方程Ax=0, 即aaTx=0. 因为a0, 所以aTx=0, 即a1x1+a2x2+ +anxn=0, 其线性无关解为p2=(-a2, a1, 0, , 0)T,p3=(-a3, 0, a1, , 0)T, ,pn=(-an, 0, 0, , a1)T.因此n个线性无关特征向量构成的矩阵为. 22. 设, 求A100. 解 由 , 得A的特征值为l1=1, l2=5, l3=-5. 对于l1=1, 解方程(A-E)x=0, 得特征向量p1=(1, 0, 0)T. 对于l1=5, 解方程(A-5E)x=0, 得特征向量p2=(2, 1, 2)T. 对于l1=-5, 解方程(A+5E)x=0, 得特征向量p3=(1, -2, 1)T. 令P=(p1, p2, p3), 则 P-1AP=diag(1, 5, -5)=L, A=PLP-1, A100=PL100P-1. 因为 L100=diag(1, 5100, 5100), , 所以 . 23. 在某国, 每年有比例为p的农村居民移居城镇, 有比例为q的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1). (1)求关系式中的矩阵A; 解 由题意知 xn+1=xn+qyn-pxn=(1-p)xn+qyn, yn+1=yn+pxn-qyn= pxn+(1-q)yn,可用矩阵表示为 , 因此 . (2)设目前农村人口与城镇人口相等, 即, 求. 解 由可知. 由,得A的特征值为l1=1, l2=r, 其中r=1-p-q. 对于l1=1, 解方程(A-E)x=0, 得特征向量p1=(q, p)T. 对于l1=r, 解方程(A-rE)x=0, 得特征向量p2=(-1, 1)T. 令, 则 P-1AP=diag(1, r)=L, A=PLP-1, An=PLnP-1. 于是 , . 24. (1)设, 求j(A)=A10-5A9; 解 由,得A的特征值为l1=1, l2=5. 对于l1=1, 解方程(A-E)x=0, 得单位特征向量. 对于l1=5, 解方程(A-5E)x=0, 得单位特征向量. 于是有正交矩阵, 使得P-1AP=diag(1, 5)=L,从而A=PLP-1, Ak=PLkP-1. 因此 j(A)=Pj(L)P-1=P(L10-5L9)P-1 =Pdiag(1, 510)-5diag(1, 59)P-1 =Pdiag(-4, 0)P-1 . (2)设, 求j(A)=A10-6A9+5A8. 解 求得正交矩阵为,使得P-1AP=diag(-1, 1, 5)=L, A=PLP-1. 于是 j(A)=Pj(L)P-1=P(L10-6L9+5L8)P-1 =PL8(L-E)(L-5E)P-1 =Pdiag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P-1 =Pdiag(12, 0, 0)P-1 . 25. 用矩阵记号表示下列二次型: (1) f=x2+4xy+4y2+2xz+z2+4yz; 解 . (2) f=x2+y2-7z2-2xy-4xz-4yz; 解 . (3) f=x12+x22+x32+x42-2x1x2+4x1x3-2x1x4+6x2x3-4x2x4. 解 . 26. 写出下列二次型的矩阵: (1); 解 二次型的矩阵为. (2). 解 二次型的矩阵为. 27. 求一个正交变换将下列二次型化成标准形: (1) f=2x12+3x22+3x33+4x2x3; 解 二次型的矩阵为. 由,得A的特征值为l1=2, l2=5, l3=1. 当l1=2时, 解方程(A-2E)x=0, 由,得特征向量(1, 0, 0)T. 取p1=(1, 0, 0)T. 当l2=5时, 解方程(A-5E)x=0, 由,得特征向量(0, 1, 1)T. 取. 当l3=1时, 解方程(A-E)x=0, 由,得特征向量(0, -1, 1)T. 取. 于是有正交矩阵T=(p1, p2, p3)和正交变换x=Ty, 使f=2y12+5y22+y32. (2) f=x12+x22+x32+x42+2x1x2-2x1x4-2x2x3+2x3x4. 解 二次型矩阵为. 由,得A的特征值为l1=-1, l2=3, l3=l4=1. 当l1=-1时, 可得单位特征向量. 当l2=3时, 可得单位特征向量. 当l3=l4=1时, 可得线性无关的单位特征向量, . 于是有正交矩阵T=( p1, p2, p3, p4)和正交变换x=Ty, 使f=-y12+3y22+y32+y42. 28. 求一个正交变换把二次曲面的方程3x2+5y2+5z2+4xy-4xz-10yz=1化成标准方程. 解 二次型的矩阵为. 由, 得A的特征值为l1=2, l2=11, l3=0, . 对于l1=2, 解方程(A-2E)x=0, 得特征向量(4, -1, 1)T, 单位化得. 对于l2=11, 解方程(A-11E)x=0, 得特征向量(1, 2, -2)T, 单位化得. 对于l3=0, 解方程Ax=0, 得特征向量(0, 1, 1)T, 单位化得. 于是有正交矩阵P=(p1, p2, p3), 使P-1AP=diag(2, 11, 0), 从而有正交变换, 使原二次方程变为标准方程2u2+11v2=1. 29. 明: 二次型f=xTAx在|x|=1时的最大值为矩阵A的最大特征值. 证明 A为实对称矩阵, 则有一正交矩阵T, 使得TAT-1=diag(l1, l2, , ln)=L成立, 其中l1, l2, , ln为A的特征值, 不妨设l1最大. 作正交变换y=Tx, 即x=TTy, 注意到T-1=TT, 有 f=xTAx=yTTATTy=yTLy=l1y12+l2y22+ +lnyn2. 因为y=Tx正交变换, 所以当|x|=1时, 有|y|=|x|=1, 即y12+y22+ +yn2=1.因此f =l1y12+l2y22+ +lnyn2l1,又当y1=1, y2=y3= =yn=0时f =l1, 所以f max =l1. 30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f(x1, x2, x3)=x12+3x22+5x32+2x1x2-4x1x3; 解 f(x1, x2, x3)=x12+3x22+5x32+2x1x2-4x1x3 =(x1+x2-2x3)2+4x2x3+2x22+x32 =(x1+x2-2x3)2-2x22+(2x2+x3)2. 令 , 即, 二次型化为规范形f=y12-y22+y32,所用的变换矩阵为. (2) f(x1, x2, x3)=x12+2x32+2x1x3+2x2x3; 解 f(x1, x2, x3)=x12+2x32+2x1x3+2x2x3 =(x1+x3)2+x32+2x2x3; =(x1+x3)2-x22+(x2+x3)2. 令 , 即, 二次型化为规范形f=y12-y22+y32,所用的变换矩阵为. (3) f(x1, x2, x3)=2x12+x22+4x32+2x1x2-2x2x3. 解 f(x1, x2, x3)=2x12+x22+4x32+2x1x2-2x2x3. . 令 , 即, 二次型化为规范形f=y12+y22+y32,所用的变换矩阵为. 31. 设f=x12+x22+5x32+2ax1x2-2x1x3+4x2x3为正定二次型, 求a. 解 二次型的矩阵为, 其主子式为 a11=1, , . 因为f为正主二次型, 所以必有1-a20且-a(5a+4)0, 解之得. 32. 判别下列二次型的正定性: (1) f=-2x12-6x22-4x32+2x1x2+2x1x3; 解 二次型的矩阵为. 因为, , ,所以f为负定. (2) f=x12+3x22+9x32+19x42-2x1x2+4x1x3+2x1x4-6x2x4-12x3x4. 解 二次型的矩阵为. 因为, , , ,所以f为正定. 33. 证明对称阵A为正定的充分必要条件是: 存在可逆矩阵U, 使A=U TU, 即A与单位阵E合同. 证明 因为对称阵A为正定的, 所以存在正交矩阵P使PTAP=diag(l1, l2, , ln)=L, 即A=PLPT,其中l1, l2, , ln均为正数. 令, 则L=L1L1, A=PL1L1TPT. 再令U=L1TPT, 则U可逆, 且A=UTU.第六章线性空间与线性变换 1. 验证所给矩阵集合对于矩阵的加法和乘数运算构成线性空间, 并写出各个空间的一个基. (1) 2阶矩阵的全体S1; 解 设A, B分别为二阶矩阵, 则A, BS1. 因为(A+B)S1, kAS1,所以S1对于矩阵的加法和乘数运算构成线性空间. , , , 是S1的一个基. (2)主对角线上的元素之和等于0的2阶矩阵的全体S2; 解 设, , A, BS2. 因为 , , 所以S2对于矩阵的加法和乘数运算构成线性空间. , , 是S2的一个基. (3) 2阶对称矩阵的全体S3. 解 设A, BS3, 则AT=A, BT=B. 因为 (A+B)T=AT+BT=A+B, (A+B)S3, (kA)T=kAT=kA, kAS3,所以S3对于加法和乘数运算构成线性空间., , 是S3的一个基. 2. 验证: 与向量(0, 0, 1)T不平行的全体3维数组向量, 对于数组向量的加法和乘数运算不构成线性空间. 解 设V=与向量(0, 0, 1)T不平行的全体三维向量, 设r1=(1, 1, 0)T, r2=(-1, 0, 1)T, 则r1, r2V, 但r1+r2=(0, 0, 1)TV, 即V不是线性空间. 3. 设U是线性空间V的一个子空间, 试证: 若U与V的维数相等, 则U=V. 证明设e1, e2, , en为U的一组基, 它可扩充为整个空间V的一个基,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论