


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学内容:人教版小学数学六年级下册教材第6869页。教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是标准的重要要求,也是本课的编排意图和价值取向。教学目标:1、知识技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。2、数学思考:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。3、问题解决:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想,培养学生分析问题,解决问题的能力。3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。教学难点:理解“总有”“至少”的意义,理解“至少数=商数1”。教学准备:多媒体课件。教学过程:一、创设情境,导入新知师:同学们我给大家表演一个“魔术”。一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?(学生参与游戏)师::象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。-出示课题 二、合作交流,探究新知 1、教学例1(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思? 学生通过操作发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 (3)探究证明。 方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 (4)认识“鸽巢问题” 像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 (5)归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(mn,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。(6)随堂练习:1. 5 只鸽子飞进了 3 个鸽笼,总有一个鸽笼至少飞进了 2 只鸽子。为什么?a 2、教学例2(课件出示例题2情境图) 思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?(二)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明得出结论”的学习过程来解决问题(一)。 (1)探究证明。 方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。 方法二:用假设法证明。 把7本书平均分成3份,73=2(本).1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。 (2)得出结论。 通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 学生通过“假设分析法归纳总结”的学习过程来解决问题(二)。(1)用假设法分析。 83=2(本).2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 103=3(本).1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 (2)归纳总结: 综合上面两种情况,要把a本书放进3个抽屉里,如果a3=b(本).1(本)或a3=b(本).2(本),那么一定有1个抽屉里至少放进(b+1)本书。 鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。 三、随堂练习1、11 只鸽子飞进了 4 个鸽笼,总有一个鸽笼至少飞进了 3 只鸽子。为什么?2、5个人坐 4 把椅子,总有一把椅子上至少坐 2 人。为什么?3、把 17 本书放进 5 个抽屉,总有一个抽屉至少放进 4 本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年贵州省凯里市辅警人员招聘考试题库及答案
- 2025年广西辅警招聘考试题题库(含参考答案)
- 2025年安徽省阜阳市辅警招聘考试题库及答案
- 2025年《中华人民共和国药品管理法》培训试卷及答案
- 期货从业资格之期货投资分析练习题库含答案详解(综合题)
- 2025年6月浙江嘉兴市海宁市卫生健康系统招聘事业单位卫技人员18人模拟试卷及答案详解(名校卷)
- 2025年北京市烟草专卖局(公司)应届高校毕业生招聘(30人)考前自测高频考点模拟试题及答案详解(各地真题)
- 2025年同江市招聘临时工作人员(12人)模拟试卷含答案详解
- 基层法律服务工作者执业核准考试备考题库及答案(云南省大理州2025年)
- 2025年江西省基层法律服务工作者考试能力提高训练题及答案一
- DL-T 5876-2024 水工沥青混凝土应用酸性骨料技术规范
- 副总经理招聘笔试题与参考答案(某大型国企)2024年
- 挂靠合同协议书版模板
- 【骨肌】化脓性骨髓炎课件
- 部编版五年级上册道德与法治全册课时练(一课一练)(含答案)
- DL∕T 1679-2016 高压直流接地极用煅烧石油焦炭技术条件
- 档案专业人员职业能力竞赛考试题库(含答案)
- 同种异体骨软骨移植与软骨修复
- 故障分析实验报告
- 行为生活方式与健康智慧树知到期末考试答案章节答案2024年杭州师范大学
- 铸造企业安全生产标准化管理体系方案资料汇编(2022-2023新标准实施模板)
评论
0/150
提交评论